def optimize(self, options=None, maxIterations=30, recoverCov=False): if options is None: options = aopt.Optimizer2Options() options.verbose = True options.doLevenbergMarquardt = True options.levenbergMarquardtLambdaInit = 100.0 options.nThreads = max(1,multiprocessing.cpu_count()-1) options.convergenceDeltaX = 1e-4 options.convergenceDeltaJ = 1 options.maxIterations = maxIterations options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(options.levenbergMarquardtLambdaInit) #run the optimization self.optimizer = aopt.Optimizer2(options) self.optimizer.setProblem(self.problem) optimizationFailed=False try: retval = self.optimizer.optimize() if retval.linearSolverFailure: optimizationFailed = True except: optimizationFailed = True if optimizationFailed: sm.logError("Optimization failed!") raise RuntimeError("Optimization failed!") #free some memory del self.optimizer gc.collect() if recoverCov: self.recoverCovariance()
def addTargetView(self, rig_observations, T_tc_guess, force=False): #create the problem for this batch and try to add it batch_problem = CalibrationTargetOptimizationProblem.fromTargetViewObservations(self.cameras, self.target, self.baselines, T_tc_guess, rig_observations, useBlakeZissermanMest=self.useBlakeZissermanMest) self.estimator_return_value = self.estimator.addBatch(batch_problem, force) if self.estimator_return_value.numIterations >= self.optimizerOptions.maxIterations: sm.logError("Did not converge in maxIterations... restarting...") raise OptimizationDiverged success = self.estimator_return_value.batchAccepted if success: sm.logDebug("The estimator accepted this batch") self.views.append(batch_problem) else: sm.logDebug("The estimator did not accept this batch") return success
def addObservation(self, cam_id, obs): #create camera list (initialization) if cam_id not in self.observations: self.observations[cam_id] = list() #add to archive self.observations[cam_id].append(obs) obs_idx = len(self.observations[cam_id])-1 #find the nearest timestamp in the table timestamps_table = self.targetViews.keys() timestamp_obs = obs.time().toSec() #check if the table is still empty (initialization) if not timestamps_table: #force a new entry (by putting the "nearest" timestamp more than max_delta_approxsync away) nearest_timestamp = timestamp_obs + 5*(self.max_delta_approxsync+1) else: nearest_timestamp = min(timestamps_table, key=lambda x: abs(x-timestamp_obs)) #if +-max approx. sync add to this time instant otherwise create a new timestamp) if abs(nearest_timestamp-timestamp_obs) <= self.max_delta_approxsync: #add to existing timestamp timestamp = nearest_timestamp else: #add new timestamp timestamp = timestamp_obs self.targetViews[ timestamp ] = dict() #fill in observation data if cam_id not in self.targetViews[timestamp]: #create entry if it doesnt exists self.targetViews[timestamp][cam_id] = dict() self.targetViews[timestamp][cam_id]['obs_id'] = obs_idx self.targetViews[timestamp][cam_id]['observed_corners'] = set(obs.getCornersIdx()) else: #we already have a view from this camera on this timestamp --> STH IS WRONG sm.logError("[TargetViewTable]: Tried to add second view to a given cameraId & " "timestamp. Maybe try to reduce the approximate syncing tolerance..")
def getAllMutualObsBetweenTwoCams(self, camA_nr, camB_nr): #get the observation ids try: edge_idx = self.G.get_eid(camA_nr, camB_nr) except: sm.logError("getAllMutualObsBetweenTwoCams: no mutual observations between the two cams!") return [], [] observations = self.G.es[edge_idx]["obs_ids"] #extract the ids obs_idx_L = [obs_ids[0] for obs_ids in observations] obs_idx_H = [obs_ids[1] for obs_ids in observations] #the first value of the tuple always stores the obsvervations for camera #with the lower id obs_idx_A = obs_idx_L if camA_nr<camB_nr else obs_idx_H obs_idx_B = obs_idx_H if camA_nr<camB_nr else obs_idx_L #get the obs from the storage using idx obs_A = [self.obs_db.observations[camA_nr][idx] for idx in obs_idx_A] obs_B = [self.obs_db.observations[camB_nr][idx] for idx in obs_idx_B] return obs_A, obs_B
def initGeometryFromObservations(self, observations): #obtain focal length guess success = self.geometry.initializeIntrinsics(observations) if not success: sm.logError("initialization of focal length for cam with topic {0} failed ".format(self.dataset.topic)) #in case of an omni model, first optimize over intrinsics only #(--> catch most of the distortion with the projection model) if self.model == acvb.DistortedOmni: success = kcc.calibrateIntrinsics(self, observations, distortionActive=False) if not success: sm.logError("initialization of intrinsics for cam with topic {0} failed ".format(self.dataset.topic)) #optimize for intrinsics & distortion success = kcc.calibrateIntrinsics(self, observations) if not success: sm.logError("initialization of intrinsics for cam with topic {0} failed ".format(self.dataset.topic)) self.isGeometryInitialized = success return success
def calibrate(self, cameraGeometry, observations, config ): """ A Motion regularization term is added with low a priori knowledge to avoid diverging parts in the spline of too many knots are selected/provided or if no image information is available for long sequences and to regularize the last few frames (which typically contain no image information but need to have knots to /close/ the spline). Kwargs: cameraGeometry (kcc.CameraGeometry): a camera geometry object with an initialized target observations ([]: The list of observation \see extractCornersFromDataset config (RsCalibratorConfiguration): calibration configuration """ ## set internal objects self.__observations = observations self.__cameraGeometry = cameraGeometry self.__cameraModelFactory = cameraGeometry.model self.__camera_dv = cameraGeometry.dv self.__camera = cameraGeometry.geometry self.__config = config self.__config.validate(self.__isRollingShutter()) # obtain initial guesses for extrinsics and intrinsics if (not self.__generateIntrinsicsInitialGuess()): sm.logError("Could not generate initial guess.") # obtain the extrinsic initial guess for every observation self.__generateExtrinsicsInitialGuess() # set the value for the motion prior term or uses the defaults W = self.__getMotionModelPriorOrDefault() self.__poseSpline = self.__generateInitialSpline( self.__config.splineOrder, self.__config.timeOffsetPadding, self.__config.numberOfKnots, self.__config.framerate ) # build estimator problem optimisation_problem = self.__buildOptimizationProblem(W) self.__runOptimization( optimisation_problem, self.__config.deltaJ, self.__config.deltaX, self.__config.maxNumberOfIterations ) # continue with knot replacement if self.__config.adaptiveKnotPlacement: knotUpdateStrategy = self.__config.knotUpdateStrategy(self.__config.framerate) for iteration in range(self.__config.maxKnotPlacementIterations): # generate the new knots list [knots, requiresUpdate] = knotUpdateStrategy.generateKnotList( self.__reprojection_errors, self.__poseSpline_dv.spline() ) # if no new knotlist was generated, we are done. if (not requiresUpdate): break; # otherwise update the spline dv and rebuild the problem self.__poseSpline = knotUpdateStrategy.getUpdatedSpline(self.__poseSpline_dv.spline(), knots, self.__config.splineOrder) optimisation_problem = self.__buildOptimizationProblem(W) self.__runOptimization( optimisation_problem, self.__config.deltaJ, self.__config.deltaX, self.__config.maxNumberOfIterations ) self.__printResults()
def solveFullBatch(cameras, baseline_guesses, graph): ############################################ ## solve the bundle adjustment ############################################ problem = aopt.OptimizationProblem() #add camera dvs for cam in cameras: cam.setDvActiveStatus(True, True, False) problem.addDesignVariable(cam.dv.distortionDesignVariable()) problem.addDesignVariable(cam.dv.projectionDesignVariable()) problem.addDesignVariable(cam.dv.shutterDesignVariable()) baseline_dvs = list() for baseline_idx in range(0, len(cameras)-1): baseline_dv = aopt.TransformationDv(baseline_guesses[baseline_idx]) for i in range(0, baseline_dv.numDesignVariables()): problem.addDesignVariable(baseline_dv.getDesignVariable(i)) baseline_dvs.append( baseline_dv ) #corner uncertainty cornerUncertainty = 1.0 R = np.eye(2) * cornerUncertainty * cornerUncertainty invR = np.linalg.inv(R) #get the target target = cameras[0].ctarget.detector.target() #Add calibration target reprojection error terms for all camera in chain target_pose_dvs = list() #shuffle the views reprojectionErrors = []; timestamps = graph.obs_db.getAllViewTimestamps() for view_id, timestamp in enumerate(timestamps): #get all observations for all cams at this time obs_tuple = graph.obs_db.getAllObsAtTimestamp(timestamp) #create a target pose dv for all target views (= T_cam0_w) T0 = graph.getTargetPoseGuess(timestamp, cameras, baseline_guesses) target_pose_dv = addPoseDesignVariable(problem, T0) target_pose_dvs.append(target_pose_dv) for cidx, obs in obs_tuple: cam = cameras[cidx] #calibration target coords to camera X coords T_cam0_calib = target_pose_dv.toExpression().inverse() #build pose chain (target->cam0->baselines->camN) T_camN_calib = T_cam0_calib for idx in range(0, cidx): T_camN_calib = baseline_dvs[idx].toExpression() * T_camN_calib ## add error terms for i in range(0, target.size()): p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i))); valid, y = obs.imagePoint(i) if valid: rerr = cameras[cidx].model.reprojectionError(y, invR, T_camN_calib * p_target, cameras[cidx].dv) problem.addErrorTerm(rerr) reprojectionErrors.append(rerr) sm.logDebug("solveFullBatch: added {0} camera error terms".format(len(reprojectionErrors))) ############################################ ## solve ############################################ options = aopt.Optimizer2Options() options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False options.nThreads = 4 options.convergenceDeltaX = 1e-3 options.convergenceDeltaJ = 1 options.maxIterations = 250 options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10) optimizer = aopt.Optimizer2(options) optimizer.setProblem(problem) #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: sm.logDebug("Before optimization:") e2 = np.array([ e.evaluateError() for e in reprojectionErrors ]) sm.logDebug( " Reprojection error squarred (camL): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) #run intrinsic calibration try: retval = optimizer.optimize() if retval.linearSolverFailure: sm.logError("calibrateIntrinsics: Optimization failed!") success = not retval.linearSolverFailure except: sm.logError("calibrateIntrinsics: Optimization failed!") success = False baselines=list() for baseline_dv in baseline_dvs: baselines.append( sm.Transformation(baseline_dv.T()) ) return success, baselines
def calibrateIntrinsics(cam_geometry, obslist, distortionActive=True, intrinsicsActive=True): #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: d = cam_geometry.geometry.projection().distortion().getParameters().flatten() p = cam_geometry.geometry.projection().getParameters().flatten() sm.logDebug("calibrateIntrinsics: intrinsics guess: {0}".format(p)) sm.logDebug("calibrateIntrinsics: distortion guess: {0}".format(d)) ############################################ ## solve the bundle adjustment ############################################ problem = aopt.OptimizationProblem() #add camera dvs cam_geometry.setDvActiveStatus(intrinsicsActive, distortionActive, False) problem.addDesignVariable(cam_geometry.dv.distortionDesignVariable()) problem.addDesignVariable(cam_geometry.dv.projectionDesignVariable()) problem.addDesignVariable(cam_geometry.dv.shutterDesignVariable()) #corner uncertainty cornerUncertainty = 1.0 R = np.eye(2) * cornerUncertainty * cornerUncertainty invR = np.linalg.inv(R) #get the image and target points corresponding to the frame target = cam_geometry.ctarget.detector.target() #target pose dv for all target views (=T_camL_w) reprojectionErrors = []; sm.logDebug("calibrateIntrinsics: adding camera error terms for {0} calibration targets".format(len(obslist))) target_pose_dvs=list() for obs in obslist: success, T_t_c = cam_geometry.geometry.estimateTransformation(obs) target_pose_dv = addPoseDesignVariable(problem, T_t_c) target_pose_dvs.append(target_pose_dv) T_cam_w = target_pose_dv.toExpression().inverse() ## add error terms for i in range(0, target.size()): p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i))); valid, y = obs.imagePoint(i) if valid: rerr = cam_geometry.model.reprojectionError(y, invR, T_cam_w * p_target, cam_geometry.dv) problem.addErrorTerm(rerr) reprojectionErrors.append(rerr) sm.logDebug("calibrateIntrinsics: added {0} camera error terms".format(len(reprojectionErrors))) ############################################ ## solve ############################################ options = aopt.Optimizer2Options() options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False options.nThreads = 4 options.convergenceDeltaX = 1e-3 options.convergenceDeltaJ = 1 options.maxIterations = 200 options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10) optimizer = aopt.Optimizer2(options) optimizer.setProblem(problem) #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: sm.logDebug("Before optimization:") e2 = np.array([ e.evaluateError() for e in reprojectionErrors ]) sm.logDebug( " Reprojection error squarred (camL): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) #run intrinsic calibration try: retval = optimizer.optimize() if retval.linearSolverFailure: sm.logError("calibrateIntrinsics: Optimization failed!") success = not retval.linearSolverFailure except: sm.logError("calibrateIntrinsics: Optimization failed!") success = False #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: d = cam_geometry.geometry.projection().distortion().getParameters().flatten() p = cam_geometry.geometry.projection().getParameters().flatten() sm.logDebug("calibrateIntrinsics: guess for intrinsics cam: {0}".format(p)) sm.logDebug("calibrateIntrinsics: guess for distortion cam: {0}".format(d)) return success
def stereoCalibrate(camL_geometry, camH_geometry, obslist, distortionActive=False, baseline=None): ##################################################### ## find initial guess as median of all pnp solutions ##################################################### if baseline is None: r=[]; t=[] for obsL, obsH in obslist: #if we have observations for both camss if obsL is not None and obsH is not None: success, T_L = camL_geometry.geometry.estimateTransformation(obsL) success, T_H = camH_geometry.geometry.estimateTransformation(obsH) baseline = T_H.inverse()*T_L t.append(baseline.t()) rv=sm.RotationVector() r.append(rv.rotationMatrixToParameters( baseline.C() )) r_median = np.median(np.asmatrix(r), axis=0).flatten().T R_median = rv.parametersToRotationMatrix(r_median) t_median = np.median(np.asmatrix(t), axis=0).flatten().T baseline_HL = sm.Transformation( sm.rt2Transform(R_median, t_median) ) else: baseline_HL = baseline #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: dL = camL_geometry.geometry.projection().distortion().getParameters().flatten() pL = camL_geometry.geometry.projection().getParameters().flatten() dH = camH_geometry.geometry.projection().distortion().getParameters().flatten() pH = camH_geometry.geometry.projection().getParameters().flatten() sm.logDebug("initial guess for stereo calib: {0}".format(baseline_HL.T())) sm.logDebug("initial guess for intrinsics camL: {0}".format(pL)) sm.logDebug("initial guess for intrinsics camH: {0}".format(pH)) sm.logDebug("initial guess for distortion camL: {0}".format(dL)) sm.logDebug("initial guess for distortion camH: {0}".format(dH)) ############################################ ## solve the bundle adjustment ############################################ problem = aopt.OptimizationProblem() #baseline design variable baseline_dv = addPoseDesignVariable(problem, baseline_HL) #target pose dv for all target views (=T_camL_w) target_pose_dvs = list() for obsL, obsH in obslist: if obsL is not None: #use camL if we have an obs for this one success, T_t_cL = camL_geometry.geometry.estimateTransformation(obsL) else: success, T_t_cH = camH_geometry.geometry.estimateTransformation(obsH) T_t_cL = T_t_cH*baseline_HL #apply baseline for the second camera target_pose_dv = addPoseDesignVariable(problem, T_t_cL) target_pose_dvs.append(target_pose_dv) #add camera dvs camL_geometry.setDvActiveStatus(True, distortionActive, False) camH_geometry.setDvActiveStatus(True, distortionActive, False) problem.addDesignVariable(camL_geometry.dv.distortionDesignVariable()) problem.addDesignVariable(camL_geometry.dv.projectionDesignVariable()) problem.addDesignVariable(camL_geometry.dv.shutterDesignVariable()) problem.addDesignVariable(camH_geometry.dv.distortionDesignVariable()) problem.addDesignVariable(camH_geometry.dv.projectionDesignVariable()) problem.addDesignVariable(camH_geometry.dv.shutterDesignVariable()) ############################################ ## add error terms ############################################ #corner uncertainty # \todo pass in the detector uncertainty somehow. cornerUncertainty = 1.0 R = np.eye(2) * cornerUncertainty * cornerUncertainty invR = np.linalg.inv(R) #Add reprojection error terms for both cameras reprojectionErrors0 = []; reprojectionErrors1 = [] for cidx, cam in enumerate([camL_geometry, camH_geometry]): sm.logDebug("stereoCalibration: adding camera error terms for {0} calibration targets".format(len(obslist))) #get the image and target points corresponding to the frame target = cam.ctarget.detector.target() #add error terms for all observations for view_id, obstuple in enumerate(obslist): #add error terms if we have an observation for this cam obs=obstuple[cidx] if obs is not None: T_cam_w = target_pose_dvs[view_id].toExpression().inverse() #add the baseline for the second camera if cidx!=0: T_cam_w = baseline_dv.toExpression() * T_cam_w for i in range(0, target.size()): p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i))); valid, y = obs.imagePoint(i) if valid: # Create an error term. rerr = cam.model.reprojectionError(y, invR, T_cam_w * p_target, cam.dv) rerr.idx = i problem.addErrorTerm(rerr) if cidx==0: reprojectionErrors0.append(rerr) else: reprojectionErrors1.append(rerr) sm.logDebug("stereoCalibrate: added {0} camera error terms".format( len(reprojectionErrors0)+len(reprojectionErrors1) )) ############################################ ## solve ############################################ options = aopt.Optimizer2Options() options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False options.nThreads = 4 options.convergenceDeltaX = 1e-3 options.convergenceDeltaJ = 1 options.maxIterations = 200 options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10) optimizer = aopt.Optimizer2(options) optimizer.setProblem(problem) #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: sm.logDebug("Before optimization:") e2 = np.array([ e.evaluateError() for e in reprojectionErrors0 ]) sm.logDebug( " Reprojection error squarred (camL): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) e2 = np.array([ e.evaluateError() for e in reprojectionErrors1 ]) sm.logDebug( " Reprojection error squarred (camH): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) sm.logDebug("baseline={0}".format(baseline_dv.toTransformationMatrix())) try: retval = optimizer.optimize() if retval.linearSolverFailure: sm.logError("stereoCalibrate: Optimization failed!") success = not retval.linearSolverFailure except: sm.logError("stereoCalibrate: Optimization failed!") success = False if sm.getLoggingLevel()==sm.LoggingLevel.Debug: sm.logDebug("After optimization:") e2 = np.array([ e.evaluateError() for e in reprojectionErrors0 ]) sm.logDebug( " Reprojection error squarred (camL): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) e2 = np.array([ e.evaluateError() for e in reprojectionErrors1 ]) sm.logDebug( " Reprojection error squarred (camH): mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) ) #verbose output if sm.getLoggingLevel()==sm.LoggingLevel.Debug: dL = camL_geometry.geometry.projection().distortion().getParameters().flatten() pL = camL_geometry.geometry.projection().getParameters().flatten() dH = camH_geometry.geometry.projection().distortion().getParameters().flatten() pH = camH_geometry.geometry.projection().getParameters().flatten() sm.logDebug("guess for intrinsics camL: {0}".format(pL)) sm.logDebug("guess for intrinsics camH: {0}".format(pH)) sm.logDebug("guess for distortion camL: {0}".format(dL)) sm.logDebug("guess for distortion camH: {0}".format(dH)) if success: baseline_HL = sm.Transformation(baseline_dv.toTransformationMatrix()) return success, baseline_HL else: #return the intiial guess if we fail return success, baseline_HL
def calibrate(self, cameraGeometry, observations, config): """ A Motion regularization term is added with low a priori knowledge to avoid diverging parts in the spline of too many knots are selected/provided or if no image information is available for long sequences and to regularize the last few frames (which typically contain no image information but need to have knots to /close/ the spline). Kwargs: cameraGeometry (kcc.CameraGeometry): a camera geometry object with an initialized target observations ([]: The list of observation \see extractCornersFromDataset config (RsCalibratorConfiguration): calibration configuration """ ## set internal objects self.__observations = observations self.__cameraGeometry = cameraGeometry self.__cameraModelFactory = cameraGeometry.model self.__camera_dv = cameraGeometry.dv self.__camera = cameraGeometry.geometry self.__config = config self.__config.validate(self.__isRollingShutter()) # obtain initial guesses for extrinsics and intrinsics if (not self.__generateIntrinsicsInitialGuess()): sm.logError("Could not generate initial guess.") # obtain the extrinsic initial guess for every observation self.__generateExtrinsicsInitialGuess() # set the value for the motion prior term or uses the defaults W = self.__getMotionModelPriorOrDefault() self.__poseSpline = self.__generateInitialSpline( self.__config.splineOrder, self.__config.timeOffsetPadding, self.__config.numberOfKnots, self.__config.framerate) # build estimator problem optimisation_problem = self.__buildOptimizationProblem(W) self.__runOptimization(optimisation_problem, self.__config.deltaJ, self.__config.deltaX, self.__config.maxNumberOfIterations) # continue with knot replacement if self.__config.adaptiveKnotPlacement: knotUpdateStrategy = self.__config.knotUpdateStrategy( self.__config.framerate) for iteration in range(self.__config.maxKnotPlacementIterations): # generate the new knots list [knots, requiresUpdate] = knotUpdateStrategy.generateKnotList( self.__reprojection_errors, self.__poseSpline_dv.spline()) # if no new knotlist was generated, we are done. if (not requiresUpdate): break # otherwise update the spline dv and rebuild the problem self.__poseSpline = knotUpdateStrategy.getUpdatedSpline( self.__poseSpline_dv.spline(), knots, self.__config.splineOrder) optimisation_problem = self.__buildOptimizationProblem(W) self.__runOptimization(optimisation_problem, self.__config.deltaJ, self.__config.deltaX, self.__config.maxNumberOfIterations) self.__printResults()
def getInitialGuesses(self, cameras): if not self.G: raise RuntimeError("Graph is uninitialized!") ################################################################# ## STEP 0: check if all cameras in the chain are connected ## through common target point observations ## (=all vertices connected?) ################################################################# if not self.isGraphConnected(): sm.logError("The cameras are not connected through mutual target observations! " "Please provide another dataset...") self.plotGraph() sys.exit(0) ################################################################# ## STEP 1: get baseline initial guesses by calibrating good ## camera pairs using a stereo calibration ## ################################################################# #first we need to find the best camera pairs to obtain the initial guesses #--> use the pairs that share the most common observed target corners #The graph is built with weighted edges that represent the number of common #target corners, so we can use dijkstras algorithm to get the best pair #configuration for the initial pair calibrations weights = [1.0/commonPoints for commonPoints in self.G.es["weight"]] #choose the cam with the least edges as base_cam outdegrees = self.G.vs.outdegree() base_cam_id = outdegrees.index(min(outdegrees)) #solve for shortest path (=optimal transformation chaining) edges_on_path = self.G.get_shortest_paths(0, weights=weights, output="epath") self.optimal_baseline_edges = set([item for sublist in edges_on_path for item in sublist]) ################################################################# ## STEP 2: solve stereo calibration problem for the baselines ## (baselines are always from lower_id to higher_id cams!) ################################################################# #calibrate all cameras in pairs for baseline_edge_id in self.optimal_baseline_edges: #get the cam_nrs from the graph edge (calibrate from low to high id) vertices = self.G.es[baseline_edge_id].tuple if vertices[0]<vertices[1]: camL_nr = vertices[0] camH_nr = vertices[1] else: camL_nr = vertices[1] camH_nr = vertices[0] print "\t initializing camera pair ({0},{1})... ".format(camL_nr, camH_nr) #run the pair extrinsic calibration obs_list = self.obs_db.getAllObsTwoCams(camL_nr, camH_nr) success, baseline_HL = kcc.stereoCalibrate(cameras[camL_nr], cameras[camH_nr], obs_list, distortionActive=False) if success: sm.logDebug("baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T())) else: sm.logError("initialization of camera pair ({0},{1}) failed ".format(camL_nr, camH_nr)) sm.logError("estimated baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T())) #store the baseline in the graph self.G.es[ self.G.get_eid(camL_nr, camH_nr) ]["baseline_HL"] = baseline_HL ################################################################# ## STEP 3: transform from the "optimal" baseline chain to camera chain ordering ## (=> baseline_0 = T_c1_c0 | ################################################################# #construct the optimal path graph G_optimal_baselines = self.G.copy() eid_not_optimal_path = set(range(0,len(G_optimal_baselines.es))) for eid in self.optimal_baseline_edges: eid_not_optimal_path.remove(eid) G_optimal_baselines.delete_edges( eid_not_optimal_path ) #now we convert the arbitary baseline graph to baselines starting from # cam0 and traverse the chain (cam0->cam1->cam2->camN) baselines = [] for baseline_id in range(0, self.numCams-1): #find the shortest path on the graph path = G_optimal_baselines.get_shortest_paths(baseline_id, baseline_id+1)[0] #get the baseline from cam with id baseline_id to baseline_id+1 baseline_HL = sm.Transformation() for path_idx in range(0, len(path)-1): source_vert = path[path_idx] target_vert = path[path_idx+1] T_edge = self.G.es[ self.G.get_eid(source_vert, target_vert) ]["baseline_HL"] #correct the direction (baselines always from low to high cam id!) T_edge = T_edge if source_vert<target_vert else T_edge.inverse() #chain up baseline_HL = T_edge * baseline_HL #store in graph baselines.append(baseline_HL) ################################################################# ## STEP 4: refine guess in full batch ################################################################# success, baselines = kcc.solveFullBatch(cameras, baselines, self) if not success: sm.logWarn("Full batch refinement failed!") return baselines