Exemplo n.º 1
0
    def optimize(self, options=None, maxIterations=30, recoverCov=False):

        if options is None:
            options = aopt.Optimizer2Options()
            options.verbose = True
            options.doLevenbergMarquardt = True
            options.levenbergMarquardtLambdaInit = 100.0
            options.nThreads = max(1,multiprocessing.cpu_count()-1)
            options.convergenceDeltaX = 1e-4
            options.convergenceDeltaJ = 1
            options.maxIterations = maxIterations
            options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(options.levenbergMarquardtLambdaInit)

        #run the optimization
        self.optimizer = aopt.Optimizer2(options)
        self.optimizer.setProblem(self.problem)

        optimizationFailed=False
        try: 
            retval = self.optimizer.optimize()
            if retval.linearSolverFailure:
                optimizationFailed = True
        except:
            optimizationFailed = True

        if optimizationFailed:
            sm.logError("Optimization failed!")
            raise RuntimeError("Optimization failed!")
        
        #free some memory
        del self.optimizer
        gc.collect()
        if recoverCov:
            self.recoverCovariance()
Exemplo n.º 2
0
    def addTargetView(self, rig_observations, T_tc_guess, force=False):
        #create the problem for this batch and try to add it
        batch_problem = CalibrationTargetOptimizationProblem.fromTargetViewObservations(self.cameras, self.target, self.baselines, T_tc_guess, rig_observations, useBlakeZissermanMest=self.useBlakeZissermanMest)
        self.estimator_return_value = self.estimator.addBatch(batch_problem, force)

        if self.estimator_return_value.numIterations >= self.optimizerOptions.maxIterations:
            sm.logError("Did not converge in maxIterations... restarting...")
            raise OptimizationDiverged

        success = self.estimator_return_value.batchAccepted
        if success:
            sm.logDebug("The estimator accepted this batch")
            self.views.append(batch_problem)
        else:
            sm.logDebug("The estimator did not accept this batch")
        return success
Exemplo n.º 3
0
 def addObservation(self, cam_id, obs):        
     #create camera list (initialization)
     if cam_id not in self.observations:
         self.observations[cam_id] = list()
         
     #add to archive
     self.observations[cam_id].append(obs)
     obs_idx = len(self.observations[cam_id])-1
 
     #find the nearest timestamp in the table
     timestamps_table = self.targetViews.keys()
     timestamp_obs = obs.time().toSec()
     
     #check if the table is still empty (initialization)
     if not timestamps_table:
         #force a new entry (by putting the "nearest" timestamp more than max_delta_approxsync away)
         nearest_timestamp = timestamp_obs + 5*(self.max_delta_approxsync+1)
     else:
         nearest_timestamp = min(timestamps_table, key=lambda x: abs(x-timestamp_obs))    
         
     #if +-max approx. sync add to this time instant otherwise create a new timestamp)
     if abs(nearest_timestamp-timestamp_obs) <= self.max_delta_approxsync:
         #add to existing timestamp
         timestamp = nearest_timestamp
     else:
         #add new timestamp
         timestamp = timestamp_obs
         self.targetViews[ timestamp ] = dict()
     
     #fill in observation data
     if cam_id not in self.targetViews[timestamp]:
         #create entry if it doesnt exists           
         self.targetViews[timestamp][cam_id] = dict()
         self.targetViews[timestamp][cam_id]['obs_id'] = obs_idx
         self.targetViews[timestamp][cam_id]['observed_corners'] = set(obs.getCornersIdx())
     else:
         #we already have a view from this camera on this timestamp --> STH IS WRONG
         sm.logError("[TargetViewTable]: Tried to add second view to a given cameraId & " 
                     "timestamp. Maybe try to reduce the approximate syncing tolerance..")
Exemplo n.º 4
0
    def getAllMutualObsBetweenTwoCams(self, camA_nr, camB_nr):
        #get the observation ids
        try:
            edge_idx = self.G.get_eid(camA_nr, camB_nr)
        except:
            sm.logError("getAllMutualObsBetweenTwoCams: no mutual observations between the two cams!")
            return [], []
        
        observations = self.G.es[edge_idx]["obs_ids"]
        
        #extract the ids
        obs_idx_L = [obs_ids[0] for obs_ids in observations]
        obs_idx_H = [obs_ids[1] for obs_ids in observations]
        
        #the first value of the tuple always stores the obsvervations for camera
        #with the lower id
        obs_idx_A = obs_idx_L if camA_nr<camB_nr else obs_idx_H
        obs_idx_B = obs_idx_H if camA_nr<camB_nr else obs_idx_L
        
        #get the obs from the storage using idx
        obs_A = [self.obs_db.observations[camA_nr][idx] for idx in obs_idx_A]
        obs_B = [self.obs_db.observations[camB_nr][idx] for idx in obs_idx_B]

        return obs_A, obs_B
Exemplo n.º 5
0
    def initGeometryFromObservations(self, observations):
        #obtain focal length guess
        success = self.geometry.initializeIntrinsics(observations)
        if not success:
            sm.logError("initialization of focal length for cam with topic {0} failed  ".format(self.dataset.topic))

        #in case of an omni model, first optimize over intrinsics only
        #(--> catch most of the distortion with the projection model)
        if self.model == acvb.DistortedOmni:
            success = kcc.calibrateIntrinsics(self, observations, distortionActive=False)
            if not success:
                sm.logError("initialization of intrinsics for cam with topic {0} failed  ".format(self.dataset.topic))

        #optimize for intrinsics & distortion
        success = kcc.calibrateIntrinsics(self, observations)
        if not success:
            sm.logError("initialization of intrinsics for cam with topic {0} failed  ".format(self.dataset.topic))

        self.isGeometryInitialized = success
        return success
Exemplo n.º 6
0
    def calibrate(self,
        cameraGeometry,
        observations,
        config
    ):
        """
        A Motion regularization term is added with low a priori knowledge to avoid
        diverging parts in the spline of too many knots are selected/provided or if
        no image information is available for long sequences and to regularize the
        last few frames (which typically contain no image information but need to have
        knots to /close/ the spline).

        Kwargs:
            cameraGeometry (kcc.CameraGeometry): a camera geometry object with an initialized target
            observations ([]: The list of observation \see extractCornersFromDataset
            config (RsCalibratorConfiguration): calibration configuration
        """

        ## set internal objects
        self.__observations = observations
        self.__cameraGeometry = cameraGeometry
        self.__cameraModelFactory = cameraGeometry.model
        self.__camera_dv = cameraGeometry.dv
        self.__camera = cameraGeometry.geometry
        self.__config = config

        self.__config.validate(self.__isRollingShutter())

        # obtain initial guesses for extrinsics and intrinsics
        if (not self.__generateIntrinsicsInitialGuess()):
            sm.logError("Could not generate initial guess.")

        # obtain the extrinsic initial guess for every observation
        self.__generateExtrinsicsInitialGuess()

        # set the value for the motion prior term or uses the defaults
        W = self.__getMotionModelPriorOrDefault()

        self.__poseSpline = self.__generateInitialSpline(
            self.__config.splineOrder,
            self.__config.timeOffsetPadding,
            self.__config.numberOfKnots,
            self.__config.framerate
        )

        # build estimator problem
        optimisation_problem = self.__buildOptimizationProblem(W)

        self.__runOptimization(
            optimisation_problem,
            self.__config.deltaJ,
            self.__config.deltaX,
            self.__config.maxNumberOfIterations
        )

        # continue with knot replacement
        if self.__config.adaptiveKnotPlacement:
            knotUpdateStrategy = self.__config.knotUpdateStrategy(self.__config.framerate)

            for iteration in range(self.__config.maxKnotPlacementIterations):

                # generate the new knots list
                [knots, requiresUpdate] = knotUpdateStrategy.generateKnotList(
                    self.__reprojection_errors,
                    self.__poseSpline_dv.spline()
                )
                # if no new knotlist was generated, we are done.
                if (not requiresUpdate):
                    break;

                # otherwise update the spline dv and rebuild the problem
                self.__poseSpline = knotUpdateStrategy.getUpdatedSpline(self.__poseSpline_dv.spline(), knots, self.__config.splineOrder)

                optimisation_problem = self.__buildOptimizationProblem(W)
                self.__runOptimization(
                    optimisation_problem,
                    self.__config.deltaJ,
                    self.__config.deltaX,
                    self.__config.maxNumberOfIterations
                )

        self.__printResults()
def solveFullBatch(cameras, baseline_guesses, graph):    
    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()
    
    #add camera dvs
    for cam in cameras:
        cam.setDvActiveStatus(True, True, False)
        problem.addDesignVariable(cam.dv.distortionDesignVariable())
        problem.addDesignVariable(cam.dv.projectionDesignVariable())
        problem.addDesignVariable(cam.dv.shutterDesignVariable())
    
    baseline_dvs = list()
    for baseline_idx in range(0, len(cameras)-1): 
        baseline_dv = aopt.TransformationDv(baseline_guesses[baseline_idx])
        
        for i in range(0, baseline_dv.numDesignVariables()):
            problem.addDesignVariable(baseline_dv.getDesignVariable(i))
        
        baseline_dvs.append( baseline_dv )
    
    #corner uncertainty
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)
    
    #get the target
    target = cameras[0].ctarget.detector.target()

    #Add calibration target reprojection error terms for all camera in chain
    target_pose_dvs = list()
      
    #shuffle the views
    reprojectionErrors = [];    
    timestamps = graph.obs_db.getAllViewTimestamps()
    for view_id, timestamp in enumerate(timestamps):
        
        #get all observations for all cams at this time
        obs_tuple = graph.obs_db.getAllObsAtTimestamp(timestamp)

        #create a target pose dv for all target views (= T_cam0_w)
        T0 = graph.getTargetPoseGuess(timestamp, cameras, baseline_guesses)
        target_pose_dv = addPoseDesignVariable(problem, T0)
        target_pose_dvs.append(target_pose_dv)
        

        for cidx, obs in obs_tuple:
            cam = cameras[cidx]
              
            #calibration target coords to camera X coords
            T_cam0_calib = target_pose_dv.toExpression().inverse()

            #build pose chain (target->cam0->baselines->camN)
            T_camN_calib = T_cam0_calib
            for idx in range(0, cidx):
                T_camN_calib = baseline_dvs[idx].toExpression() * T_camN_calib
                
        
            ## add error terms
            for i in range(0, target.size()):
                p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i)));
                valid, y = obs.imagePoint(i)
                if valid:
                    rerr = cameras[cidx].model.reprojectionError(y, invR, T_camN_calib * p_target, cameras[cidx].dv)
                    problem.addErrorTerm(rerr)
                    reprojectionErrors.append(rerr)
                                                    
    sm.logDebug("solveFullBatch: added {0} camera error terms".format(len(reprojectionErrors)))
    
    ############################################
    ## solve
    ############################################       
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 250
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors ])
        sm.logDebug( " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
    
    #run intrinsic calibration
    try:
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("calibrateIntrinsics: Optimization failed!")
        success = not retval.linearSolverFailure

    except:
        sm.logError("calibrateIntrinsics: Optimization failed!")
        success = False

    baselines=list()
    for baseline_dv in baseline_dvs:
        baselines.append( sm.Transformation(baseline_dv.T()) )
    
    return success, baselines
def calibrateIntrinsics(cam_geometry, obslist, distortionActive=True, intrinsicsActive=True):
    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        d = cam_geometry.geometry.projection().distortion().getParameters().flatten()
        p = cam_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("calibrateIntrinsics: intrinsics guess: {0}".format(p))
        sm.logDebug("calibrateIntrinsics: distortion guess: {0}".format(d))
    
    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()
    
    #add camera dvs
    cam_geometry.setDvActiveStatus(intrinsicsActive, distortionActive, False)
    problem.addDesignVariable(cam_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(cam_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(cam_geometry.dv.shutterDesignVariable())
    
    #corner uncertainty
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)
    
    #get the image and target points corresponding to the frame
    target = cam_geometry.ctarget.detector.target()
    
    #target pose dv for all target views (=T_camL_w)
    reprojectionErrors = [];    
    sm.logDebug("calibrateIntrinsics: adding camera error terms for {0} calibration targets".format(len(obslist)))
    target_pose_dvs=list()
    for obs in obslist: 
        success, T_t_c = cam_geometry.geometry.estimateTransformation(obs)
        target_pose_dv = addPoseDesignVariable(problem, T_t_c)
        target_pose_dvs.append(target_pose_dv)
        
        T_cam_w = target_pose_dv.toExpression().inverse()
    
        ## add error terms
        for i in range(0, target.size()):
            p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i)));
            valid, y = obs.imagePoint(i)
            if valid:
                rerr = cam_geometry.model.reprojectionError(y, invR, T_cam_w * p_target, cam_geometry.dv)
                problem.addErrorTerm(rerr)
                reprojectionErrors.append(rerr)
                                                    
    sm.logDebug("calibrateIntrinsics: added {0} camera error terms".format(len(reprojectionErrors)))
    
    ############################################
    ## solve
    ############################################       
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 200
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors ])
        sm.logDebug( " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
    
    #run intrinsic calibration
    try: 
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("calibrateIntrinsics: Optimization failed!")
        success = not retval.linearSolverFailure

    except:
        sm.logError("calibrateIntrinsics: Optimization failed!")
        success = False
    
    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        d = cam_geometry.geometry.projection().distortion().getParameters().flatten()
        p = cam_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("calibrateIntrinsics: guess for intrinsics cam: {0}".format(p))
        sm.logDebug("calibrateIntrinsics: guess for distortion cam: {0}".format(d))
    
    return success
def stereoCalibrate(camL_geometry, camH_geometry, obslist, distortionActive=False, baseline=None):
    #####################################################
    ## find initial guess as median of  all pnp solutions
    #####################################################
    if baseline is None:
        r=[]; t=[]
        for obsL, obsH in obslist:
            #if we have observations for both camss
            if obsL is not None and obsH is not None:
                success, T_L = camL_geometry.geometry.estimateTransformation(obsL)
                success, T_H = camH_geometry.geometry.estimateTransformation(obsH)
                
                baseline = T_H.inverse()*T_L
                t.append(baseline.t())
                rv=sm.RotationVector()
                r.append(rv.rotationMatrixToParameters( baseline.C() ))
        
        r_median = np.median(np.asmatrix(r), axis=0).flatten().T
        R_median = rv.parametersToRotationMatrix(r_median)
        t_median = np.median(np.asmatrix(t), axis=0).flatten().T
        
        baseline_HL = sm.Transformation( sm.rt2Transform(R_median, t_median) )
    else:
        baseline_HL = baseline
    
    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        dL = camL_geometry.geometry.projection().distortion().getParameters().flatten()
        pL = camL_geometry.geometry.projection().getParameters().flatten()
        dH = camH_geometry.geometry.projection().distortion().getParameters().flatten()
        pH = camH_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("initial guess for stereo calib: {0}".format(baseline_HL.T()))
        sm.logDebug("initial guess for intrinsics camL: {0}".format(pL))
        sm.logDebug("initial guess for intrinsics camH: {0}".format(pH))
        sm.logDebug("initial guess for distortion camL: {0}".format(dL))
        sm.logDebug("initial guess for distortion camH: {0}".format(dH))    
    
    ############################################
    ## solve the bundle adjustment
    ############################################
    problem = aopt.OptimizationProblem()

    #baseline design variable        
    baseline_dv = addPoseDesignVariable(problem, baseline_HL)
        
    #target pose dv for all target views (=T_camL_w)
    target_pose_dvs = list()
    for obsL, obsH in obslist:
        if obsL is not None: #use camL if we have an obs for this one
            success, T_t_cL = camL_geometry.geometry.estimateTransformation(obsL)
        else:
            success, T_t_cH = camH_geometry.geometry.estimateTransformation(obsH)
            T_t_cL = T_t_cH*baseline_HL #apply baseline for the second camera
            
        target_pose_dv = addPoseDesignVariable(problem, T_t_cL)
        target_pose_dvs.append(target_pose_dv)
    
    #add camera dvs
    camL_geometry.setDvActiveStatus(True, distortionActive, False)
    camH_geometry.setDvActiveStatus(True, distortionActive, False)
    problem.addDesignVariable(camL_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(camL_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(camL_geometry.dv.shutterDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.distortionDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.projectionDesignVariable())
    problem.addDesignVariable(camH_geometry.dv.shutterDesignVariable())
    
    ############################################
    ## add error terms
    ############################################
    
    #corner uncertainty
    # \todo pass in the detector uncertainty somehow.
    cornerUncertainty = 1.0
    R = np.eye(2) * cornerUncertainty * cornerUncertainty
    invR = np.linalg.inv(R)
        
    #Add reprojection error terms for both cameras
    reprojectionErrors0 = []; reprojectionErrors1 = []
            
    for cidx, cam in enumerate([camL_geometry, camH_geometry]):
        sm.logDebug("stereoCalibration: adding camera error terms for {0} calibration targets".format(len(obslist)))

        #get the image and target points corresponding to the frame
        target = cam.ctarget.detector.target()
        
        #add error terms for all observations
        for view_id, obstuple in enumerate(obslist):
            
            #add error terms if we have an observation for this cam
            obs=obstuple[cidx]
            if obs is not None:
                T_cam_w = target_pose_dvs[view_id].toExpression().inverse()
            
                #add the baseline for the second camera
                if cidx!=0:
                    T_cam_w =  baseline_dv.toExpression() * T_cam_w
                    
                for i in range(0, target.size()):
                    p_target = aopt.HomogeneousExpression(sm.toHomogeneous(target.point(i)));
                    valid, y = obs.imagePoint(i)
                    if valid:
                        # Create an error term.
                        rerr = cam.model.reprojectionError(y, invR, T_cam_w * p_target, cam.dv)
                        rerr.idx = i
                        problem.addErrorTerm(rerr)
                    
                        if cidx==0:
                            reprojectionErrors0.append(rerr)
                        else:
                            reprojectionErrors1.append(rerr)
                                                        
        sm.logDebug("stereoCalibrate: added {0} camera error terms".format( len(reprojectionErrors0)+len(reprojectionErrors1) ))
        
    ############################################
    ## solve
    ############################################       
    options = aopt.Optimizer2Options()
    options.verbose = True if sm.getLoggingLevel()==sm.LoggingLevel.Debug else False
    options.nThreads = 4
    options.convergenceDeltaX = 1e-3
    options.convergenceDeltaJ = 1
    options.maxIterations = 200
    options.trustRegionPolicy = aopt.LevenbergMarquardtTrustRegionPolicy(10)

    optimizer = aopt.Optimizer2(options)
    optimizer.setProblem(problem)

    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        sm.logDebug("Before optimization:")
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors0 ])
        sm.logDebug( " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors1 ])
        sm.logDebug( " Reprojection error squarred (camH):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
    
        sm.logDebug("baseline={0}".format(baseline_dv.toTransformationMatrix()))
    
    try: 
        retval = optimizer.optimize()
        if retval.linearSolverFailure:
            sm.logError("stereoCalibrate: Optimization failed!")
        success = not retval.linearSolverFailure
    except:
        sm.logError("stereoCalibrate: Optimization failed!")
        success = False
    
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        sm.logDebug("After optimization:")
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors0 ])
        sm.logDebug( " Reprojection error squarred (camL):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
        e2 = np.array([ e.evaluateError() for e in reprojectionErrors1 ])
        sm.logDebug( " Reprojection error squarred (camH):  mean {0}, median {1}, std: {2}".format(np.mean(e2), np.median(e2), np.std(e2) ) )
    
    #verbose output
    if sm.getLoggingLevel()==sm.LoggingLevel.Debug:
        dL = camL_geometry.geometry.projection().distortion().getParameters().flatten()
        pL = camL_geometry.geometry.projection().getParameters().flatten()
        dH = camH_geometry.geometry.projection().distortion().getParameters().flatten()
        pH = camH_geometry.geometry.projection().getParameters().flatten()
        sm.logDebug("guess for intrinsics camL: {0}".format(pL))
        sm.logDebug("guess for intrinsics camH: {0}".format(pH))
        sm.logDebug("guess for distortion camL: {0}".format(dL))
        sm.logDebug("guess for distortion camH: {0}".format(dH))    
    
    if success:
        baseline_HL = sm.Transformation(baseline_dv.toTransformationMatrix())
        return success, baseline_HL
    else:
        #return the intiial guess if we fail
        return success, baseline_HL
Exemplo n.º 10
0
    def calibrate(self, cameraGeometry, observations, config):
        """
        A Motion regularization term is added with low a priori knowledge to avoid
        diverging parts in the spline of too many knots are selected/provided or if
        no image information is available for long sequences and to regularize the
        last few frames (which typically contain no image information but need to have
        knots to /close/ the spline).

        Kwargs:
            cameraGeometry (kcc.CameraGeometry): a camera geometry object with an initialized target
            observations ([]: The list of observation \see extractCornersFromDataset
            config (RsCalibratorConfiguration): calibration configuration
        """

        ## set internal objects
        self.__observations = observations
        self.__cameraGeometry = cameraGeometry
        self.__cameraModelFactory = cameraGeometry.model
        self.__camera_dv = cameraGeometry.dv
        self.__camera = cameraGeometry.geometry
        self.__config = config

        self.__config.validate(self.__isRollingShutter())

        # obtain initial guesses for extrinsics and intrinsics
        if (not self.__generateIntrinsicsInitialGuess()):
            sm.logError("Could not generate initial guess.")

        # obtain the extrinsic initial guess for every observation
        self.__generateExtrinsicsInitialGuess()

        # set the value for the motion prior term or uses the defaults
        W = self.__getMotionModelPriorOrDefault()

        self.__poseSpline = self.__generateInitialSpline(
            self.__config.splineOrder, self.__config.timeOffsetPadding,
            self.__config.numberOfKnots, self.__config.framerate)

        # build estimator problem
        optimisation_problem = self.__buildOptimizationProblem(W)

        self.__runOptimization(optimisation_problem, self.__config.deltaJ,
                               self.__config.deltaX,
                               self.__config.maxNumberOfIterations)

        # continue with knot replacement
        if self.__config.adaptiveKnotPlacement:
            knotUpdateStrategy = self.__config.knotUpdateStrategy(
                self.__config.framerate)

            for iteration in range(self.__config.maxKnotPlacementIterations):

                # generate the new knots list
                [knots, requiresUpdate] = knotUpdateStrategy.generateKnotList(
                    self.__reprojection_errors, self.__poseSpline_dv.spline())
                # if no new knotlist was generated, we are done.
                if (not requiresUpdate):
                    break

                # otherwise update the spline dv and rebuild the problem
                self.__poseSpline = knotUpdateStrategy.getUpdatedSpline(
                    self.__poseSpline_dv.spline(), knots,
                    self.__config.splineOrder)

                optimisation_problem = self.__buildOptimizationProblem(W)
                self.__runOptimization(optimisation_problem,
                                       self.__config.deltaJ,
                                       self.__config.deltaX,
                                       self.__config.maxNumberOfIterations)

        self.__printResults()
Exemplo n.º 11
0
    def getInitialGuesses(self, cameras):
        
        if not self.G:
            raise RuntimeError("Graph is uninitialized!")
        
        #################################################################
        ## STEP 0: check if all cameras in the chain are connected
        ##         through common target point observations
        ##         (=all vertices connected?)
        #################################################################
        if not self.isGraphConnected():
            sm.logError("The cameras are not connected through mutual target observations! " 
                        "Please provide another dataset...")
            
            self.plotGraph()
            sys.exit(0)
        
        #################################################################
        ## STEP 1: get baseline initial guesses by calibrating good 
        ##         camera pairs using a stereo calibration
        ## 
        #################################################################

        #first we need to find the best camera pairs to obtain the initial guesses
        #--> use the pairs that share the most common observed target corners
        #The graph is built with weighted edges that represent the number of common
        #target corners, so we can use dijkstras algorithm to get the best pair
        #configuration for the initial pair calibrations
        weights = [1.0/commonPoints for commonPoints in self.G.es["weight"]]

        #choose the cam with the least edges as base_cam
        outdegrees = self.G.vs.outdegree()
        base_cam_id = outdegrees.index(min(outdegrees))

        #solve for shortest path  (=optimal transformation chaining)
        edges_on_path = self.G.get_shortest_paths(0, weights=weights, output="epath")
        
        self.optimal_baseline_edges = set([item for sublist in edges_on_path for item in sublist])
        
        
        #################################################################
        ## STEP 2: solve stereo calibration problem for the baselines
        ##         (baselines are always from lower_id to higher_id cams!)
        #################################################################
        
        #calibrate all cameras in pairs
        for baseline_edge_id in self.optimal_baseline_edges:

            #get the cam_nrs from the graph edge (calibrate from low to high id)
            vertices = self.G.es[baseline_edge_id].tuple
            if vertices[0]<vertices[1]:
                camL_nr = vertices[0]
                camH_nr = vertices[1]
            else:
                camL_nr = vertices[1]
                camH_nr = vertices[0]
            
            print "\t initializing camera pair ({0},{1})...  ".format(camL_nr, camH_nr)          

            #run the pair extrinsic calibration
            obs_list = self.obs_db.getAllObsTwoCams(camL_nr, camH_nr)
            success, baseline_HL = kcc.stereoCalibrate(cameras[camL_nr], 
                                                       cameras[camH_nr], 
                                                       obs_list,
                                                       distortionActive=False)
            
            if success:
                sm.logDebug("baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T()))
            else:
                sm.logError("initialization of camera pair ({0},{1}) failed  ".format(camL_nr, camH_nr))
                sm.logError("estimated baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T()))
        
            #store the baseline in the graph
            self.G.es[ self.G.get_eid(camL_nr, camH_nr) ]["baseline_HL"] = baseline_HL
        
        #################################################################
        ## STEP 3: transform from the "optimal" baseline chain to camera chain ordering
        ##         (=> baseline_0 = T_c1_c0 | 
        #################################################################
        
        #construct the optimal path graph
        G_optimal_baselines = self.G.copy()
        
        eid_not_optimal_path = set(range(0,len(G_optimal_baselines.es)))
        for eid in self.optimal_baseline_edges:
            eid_not_optimal_path.remove(eid)
        G_optimal_baselines.delete_edges( eid_not_optimal_path )
        
        #now we convert the arbitary baseline graph to baselines starting from 
        # cam0 and traverse the chain (cam0->cam1->cam2->camN)
        baselines = []
        for baseline_id in range(0, self.numCams-1):
            #find the shortest path on the graph
            path = G_optimal_baselines.get_shortest_paths(baseline_id, baseline_id+1)[0]
            
            #get the baseline from cam with id baseline_id to baseline_id+1
            baseline_HL = sm.Transformation()
            for path_idx in range(0, len(path)-1):
                source_vert = path[path_idx]
                target_vert = path[path_idx+1]
                T_edge = self.G.es[ self.G.get_eid(source_vert, target_vert) ]["baseline_HL"]
            
                #correct the direction (baselines always from low to high cam id!)
                T_edge = T_edge if source_vert<target_vert else T_edge.inverse()
            
                #chain up
                baseline_HL = T_edge * baseline_HL
            
            #store in graph
            baselines.append(baseline_HL)
 
        #################################################################
        ## STEP 4: refine guess in full batch
        #################################################################
        success, baselines = kcc.solveFullBatch(cameras, baselines, self)
        
        if not success:
            sm.logWarn("Full batch refinement failed!")
    
        return baselines
Exemplo n.º 12
0
    def getInitialGuesses(self, cameras):
        
        if not self.G:
            raise RuntimeError("Graph is uninitialized!")
        
        #################################################################
        ## STEP 0: check if all cameras in the chain are connected
        ##         through common target point observations
        ##         (=all vertices connected?)
        #################################################################
        if not self.isGraphConnected():
            sm.logError("The cameras are not connected through mutual target observations! " 
                        "Please provide another dataset...")
            
            self.plotGraph()
            sys.exit(0)
        
        #################################################################
        ## STEP 1: get baseline initial guesses by calibrating good 
        ##         camera pairs using a stereo calibration
        ## 
        #################################################################

        #first we need to find the best camera pairs to obtain the initial guesses
        #--> use the pairs that share the most common observed target corners
        #The graph is built with weighted edges that represent the number of common
        #target corners, so we can use dijkstras algorithm to get the best pair
        #configuration for the initial pair calibrations
        weights = [1.0/commonPoints for commonPoints in self.G.es["weight"]]

        #choose the cam with the least edges as base_cam
        outdegrees = self.G.vs.outdegree()
        base_cam_id = outdegrees.index(min(outdegrees))

        #solve for shortest path  (=optimal transformation chaining)
        edges_on_path = self.G.get_shortest_paths(0, weights=weights, output="epath")
        
        self.optimal_baseline_edges = set([item for sublist in edges_on_path for item in sublist])
        
        
        #################################################################
        ## STEP 2: solve stereo calibration problem for the baselines
        ##         (baselines are always from lower_id to higher_id cams!)
        #################################################################
        
        #calibrate all cameras in pairs
        for baseline_edge_id in self.optimal_baseline_edges:

            #get the cam_nrs from the graph edge (calibrate from low to high id)
            vertices = self.G.es[baseline_edge_id].tuple
            if vertices[0]<vertices[1]:
                camL_nr = vertices[0]
                camH_nr = vertices[1]
            else:
                camL_nr = vertices[1]
                camH_nr = vertices[0]
            
            print "\t initializing camera pair ({0},{1})...  ".format(camL_nr, camH_nr)          

            #run the pair extrinsic calibration
            obs_list = self.obs_db.getAllObsTwoCams(camL_nr, camH_nr)
            success, baseline_HL = kcc.stereoCalibrate(cameras[camL_nr], 
                                                       cameras[camH_nr], 
                                                       obs_list,
                                                       distortionActive=False)
            
            if success:
                sm.logDebug("baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T()))
            else:
                sm.logError("initialization of camera pair ({0},{1}) failed  ".format(camL_nr, camH_nr))
                sm.logError("estimated baseline_{0}_{1}={2}".format(camL_nr, camH_nr, baseline_HL.T()))
        
            #store the baseline in the graph
            self.G.es[ self.G.get_eid(camL_nr, camH_nr) ]["baseline_HL"] = baseline_HL
        
        #################################################################
        ## STEP 3: transform from the "optimal" baseline chain to camera chain ordering
        ##         (=> baseline_0 = T_c1_c0 | 
        #################################################################
        
        #construct the optimal path graph
        G_optimal_baselines = self.G.copy()
        
        eid_not_optimal_path = set(range(0,len(G_optimal_baselines.es)))
        for eid in self.optimal_baseline_edges:
            eid_not_optimal_path.remove(eid)
        G_optimal_baselines.delete_edges( eid_not_optimal_path )
        
        #now we convert the arbitary baseline graph to baselines starting from 
        # cam0 and traverse the chain (cam0->cam1->cam2->camN)
        baselines = []
        for baseline_id in range(0, self.numCams-1):
            #find the shortest path on the graph
            path = G_optimal_baselines.get_shortest_paths(baseline_id, baseline_id+1)[0]
            
            #get the baseline from cam with id baseline_id to baseline_id+1
            baseline_HL = sm.Transformation()
            for path_idx in range(0, len(path)-1):
                source_vert = path[path_idx]
                target_vert = path[path_idx+1]
                T_edge = self.G.es[ self.G.get_eid(source_vert, target_vert) ]["baseline_HL"]
            
                #correct the direction (baselines always from low to high cam id!)
                T_edge = T_edge if source_vert<target_vert else T_edge.inverse()
            
                #chain up
                baseline_HL = T_edge * baseline_HL
            
            #store in graph
            baselines.append(baseline_HL)
 
        #################################################################
        ## STEP 4: refine guess in full batch
        #################################################################
        success, baselines = kcc.solveFullBatch(cameras, baselines, self)
        
        if not success:
            sm.logWarn("Full batch refinement failed!")
    
        return baselines