Exemplo n.º 1
0
    def test_challenger_list_callback(self, patch_sample, patch_ei,
                                      patch_impute):
        values = (10, 1, 9, 2, 8, 3, 7, 4, 6, 5)
        patch_sample.return_value = ConfigurationMock(1)
        patch_ei.return_value = np.array([[_] for _ in values], dtype=float)
        patch_impute.side_effect = lambda l: values
        cs = ConfigurationSpace()
        ei = EI(None)
        rs = RandomSearch(ei, cs)
        rs._maximize = unittest.mock.Mock()
        rs._maximize.return_value = [(0, 0)]

        rval = rs.maximize(
            runhistory=None,
            stats=None,
            num_points=10,
        )
        self.assertEqual(rs._maximize.call_count, 0)
        next(rval)
        self.assertEqual(rs._maximize.call_count, 1)

        random_configuration_chooser = unittest.mock.Mock()
        random_configuration_chooser.check.side_effect = [
            True, False, False, False
        ]
        rs._maximize = unittest.mock.Mock()
        rs._maximize.return_value = [(0, 0), (1, 1)]

        rval = rs.maximize(
            runhistory=None,
            stats=None,
            num_points=10,
            random_configuration_chooser=random_configuration_chooser,
        )
        self.assertEqual(rs._maximize.call_count, 0)
        # The first configuration is chosen at random (see the random_configuration_chooser mock)
        conf = next(rval)
        self.assertIsInstance(conf, ConfigurationMock)
        self.assertEqual(rs._maximize.call_count, 0)
        # The 2nd configuration triggers the call to the callback (see the random_configuration_chooser mock)
        conf = next(rval)
        self.assertEqual(rs._maximize.call_count, 1)
        self.assertEqual(conf, 0)
        # The 3rd configuration doesn't trigger the callback any more
        conf = next(rval)
        self.assertEqual(rs._maximize.call_count, 1)
        self.assertEqual(conf, 1)

        with self.assertRaises(StopIteration):
            next(rval)
Exemplo n.º 2
0
class EPMChooser(object):
    def __init__(self,
                 scenario: Scenario,
                 stats: Stats,
                 runhistory: RunHistory,
                 runhistory2epm: AbstractRunHistory2EPM,
                 model: RandomForestWithInstances,
                 acq_optimizer: AcquisitionFunctionMaximizer,
                 acquisition_func: AbstractAcquisitionFunction,
                 rng: np.random.RandomState,
                 restore_incumbent: Configuration = None,
                 random_configuration_chooser: typing.
                 Union[RandomConfigurationChooser] = ChooserNoCoolDown(2.0),
                 predict_x_best: bool = True,
                 min_samples_model: int = 1):
        """
        Interface to train the EPM and generate next configurations

        Parameters
        ----------

        scenario: smac.scenario.scenario.Scenario
            Scenario object
        stats: smac.stats.stats.Stats
            statistics object with configuration budgets
        runhistory: smac.runhistory.runhistory.RunHistory
            runhistory with all runs so far
        model: smac.epm.rf_with_instances.RandomForestWithInstances
            empirical performance model (right now, we support only
            RandomForestWithInstances)
        acq_optimizer: smac.optimizer.ei_optimization.AcquisitionFunctionMaximizer
            Optimizer of acquisition function.
        restore_incumbent: Configuration
            incumbent to be used from the start. ONLY used to restore states.
        rng: np.random.RandomState
            Random number generator
        random_configuration_chooser:
            Chooser for random configuration -- one of

            * ChooserNoCoolDown(modulus)
            * ChooserLinearCoolDown(start_modulus, modulus_increment, end_modulus)
        predict_x_best: bool
            Choose x_best for computing the acquisition function via the model instead of via the observations.
        min_samples_model: int
            Minimum number of samples to build a model
        """

        self.logger = logging.getLogger(self.__module__ + "." +
                                        self.__class__.__name__)
        self.incumbent = restore_incumbent

        self.scenario = scenario
        self.stats = stats
        self.runhistory = runhistory
        self.rh2EPM = runhistory2epm
        self.model = model
        self.acq_optimizer = acq_optimizer
        self.acquisition_func = acquisition_func
        self.rng = rng
        self.random_configuration_chooser = random_configuration_chooser

        self._random_search = RandomSearch(
            acquisition_func,
            self.scenario.cs,  # type: ignore[attr-defined] # noqa F821
            rng,
        )

        self.initial_design_configs = []  # type: typing.List[Configuration]

        self.predict_x_best = predict_x_best

        self.min_samples_model = min_samples_model
        self.currently_considered_budgets = [
            0.0,
        ]

    def _collect_data_to_train_model(
            self) -> typing.Tuple[np.ndarray, np.ndarray, np.ndarray]:
        # if we use a float value as a budget, we want to train the model only on the highest budget
        available_budgets = []
        for run_key in self.runhistory.data.keys():
            available_budgets.append(run_key.budget)

        # Sort available budgets from highest to lowest budget
        available_budgets = sorted(list(set(available_budgets)), reverse=True)

        # Get #points per budget and if there are enough samples, then build a model
        for b in available_budgets:
            X, Y = self.rh2EPM.transform(self.runhistory, budget_subset=[
                b,
            ])
            if X.shape[0] >= self.min_samples_model:
                self.currently_considered_budgets = [
                    b,
                ]
                configs_array = self.rh2EPM.get_configurations(
                    self.runhistory,
                    budget_subset=self.currently_considered_budgets)
                return X, Y, configs_array

        return np.empty(shape=[0, 0]), np.empty(shape=[
            0,
        ]), np.empty(shape=[0, 0])

    def _get_evaluated_configs(self) -> typing.List[Configuration]:
        return self.runhistory.get_all_configs_per_budget(
            budget_subset=self.currently_considered_budgets)

    def choose_next(
            self,
            incumbent_value: float = None) -> typing.Iterator[Configuration]:
        """Choose next candidate solution with Bayesian optimization. The
        suggested configurations depend on the argument ``acq_optimizer`` to
        the ``SMBO`` class.

        Parameters
        ----------
        incumbent_value: float
            Cost value of incumbent configuration (required for acquisition function);
            If not given, it will be inferred from runhistory or predicted;
            if not given and runhistory is empty, it will raise a ValueError.

        Returns
        -------
        Iterator
        """

        self.logger.debug("Search for next configuration")
        X, Y, X_configurations = self._collect_data_to_train_model()

        if X.shape[0] == 0:
            # Only return a single point to avoid an overly high number of
            # random search iterations
            return self._random_search.maximize(runhistory=self.runhistory,
                                                stats=self.stats,
                                                num_points=1)
        self.model.train(X, Y)

        if incumbent_value is not None:
            best_observation = incumbent_value
            x_best_array = None  # type: typing.Optional[np.ndarray]
        else:
            if self.runhistory.empty():
                raise ValueError("Runhistory is empty and the cost value of "
                                 "the incumbent is unknown.")
            x_best_array, best_observation = self._get_x_best(
                self.predict_x_best, X_configurations)

        self.acquisition_func.update(
            model=self.model,
            eta=best_observation,
            incumbent_array=x_best_array,
            num_data=len(self._get_evaluated_configs()),
            X=X_configurations,
        )

        challengers = self.acq_optimizer.maximize(
            runhistory=self.runhistory,
            stats=self.stats,
            num_points=self.scenario.
            acq_opt_challengers,  # type: ignore[attr-defined] # noqa F821
            random_configuration_chooser=self.random_configuration_chooser)
        return challengers

    def _get_x_best(self, predict: bool,
                    X: np.ndarray) -> typing.Tuple[float, np.ndarray]:
        """Get value, configuration, and array representation of the "best" configuration.

        The definition of best varies depending on the argument ``predict``. If set to ``True``,
        this function will return the stats of the best configuration as predicted by the model,
        otherwise it will return the stats for the best observed configuration.

        Parameters
        ----------
        predict : bool
            Whether to use the predicted or observed best.

        Returns
        -------
        float
        np.ndarry
        Configuration
        """
        if predict:
            costs = list(
                map(
                    lambda x: (
                        self.model.predict_marginalized_over_instances(
                            x.reshape((1, -1)))[0][0][0],
                        x,
                    ),
                    X,
                ))
            costs = sorted(costs, key=lambda t: t[0])
            x_best_array = costs[0][1]
            best_observation = costs[0][0]
            # won't need log(y) if EPM was already trained on log(y)
        else:
            all_configs = self.runhistory.get_all_configs_per_budget(
                budget_subset=self.currently_considered_budgets)
            x_best = self.incumbent
            x_best_array = convert_configurations_to_array(all_configs)
            best_observation = self.runhistory.get_cost(x_best)
            best_observation_as_array = np.array(best_observation).reshape(
                (1, 1))
            # It's unclear how to do this for inv scaling and potential future scaling.
            # This line should be changed if necessary
            best_observation = self.rh2EPM.transform_response_values(
                best_observation_as_array)
            best_observation = best_observation[0][0]

        return x_best_array, best_observation
Exemplo n.º 3
0
class SMBO(object):

    """Interface that contains the main Bayesian optimization loop

    Attributes
    ----------
    logger
    incumbent
    scenario
    config_space
    stats
    initial_design
    runhistory
    rh2EPM
    intensifier
    aggregate_func
    num_run
    model
    acq_optimizer
    acquisition_func
    rng
    """

    def __init__(self,
                 scenario: Scenario,
                 stats: Stats,
                 initial_design: InitialDesign,
                 runhistory: RunHistory,
                 runhistory2epm: AbstractRunHistory2EPM,
                 intensifier: Intensifier,
                 aggregate_func: callable,
                 num_run: int,
                 model: RandomForestWithInstances,
                 acq_optimizer: AcquisitionFunctionMaximizer,
                 acquisition_func: AbstractAcquisitionFunction,
                 rng: np.random.RandomState,
                 restore_incumbent: Configuration=None):
        """
        Interface that contains the main Bayesian optimization loop

        Parameters
        ----------
        scenario: smac.scenario.scenario.Scenario
            Scenario object
        stats: Stats
            statistics object with configuration budgets
        initial_design: InitialDesign
            initial sampling design
        runhistory: RunHistory
            runhistory with all runs so far
        runhistory2epm : AbstractRunHistory2EPM
            Object that implements the AbstractRunHistory2EPM to convert runhistory
            data into EPM data
        intensifier: Intensifier
            intensification of new challengers against incumbent configuration
            (probably with some kind of racing on the instances)
        aggregate_func: callable
            how to aggregate the runs in the runhistory to get the performance of a
             configuration
        num_run: int
            id of this run (used for pSMAC)
        model: RandomForestWithInstances
            empirical performance model (right now, we support only
            RandomForestWithInstances)
        acq_optimizer: AcquisitionFunctionMaximizer
            Optimizer of acquisition function.
        acquisition_function : AcquisitionFunction
            Object that implements the AbstractAcquisitionFunction (i.e., infill
            criterion for acq_optimizer)
        restore_incumbent: Configuration
            incumbent to be used from the start. ONLY used to restore states.
        rng: np.random.RandomState
            Random number generator
        """

        self.logger = logging.getLogger(
            self.__module__ + "." + self.__class__.__name__)
        self.incumbent = restore_incumbent

        self.scenario = scenario
        self.config_space = scenario.cs
        self.stats = stats
        self.initial_design = initial_design
        self.runhistory = runhistory
        self.rh2EPM = runhistory2epm
        self.intensifier = intensifier
        self.aggregate_func = aggregate_func
        self.num_run = num_run
        self.model = model
        self.acq_optimizer = acq_optimizer
        self.acquisition_func = acquisition_func
        self.rng = rng

        self._random_search = RandomSearch(
            acquisition_func, self.config_space, rng
        )

    def start(self):
        """Starts the Bayesian Optimization loop.
        Detects whether we the optimization is restored from previous state.
        """
        self.stats.start_timing()
        # Initialization, depends on input
        if self.stats.ta_runs == 0 and self.incumbent is None:
            try:
                self.incumbent = self.initial_design.run()
            except FirstRunCrashedException as err:
                if self.scenario.abort_on_first_run_crash:
                    raise
        elif self.stats.ta_runs > 0 and self.incumbent is None:
            raise ValueError("According to stats there have been runs performed, "
                             "but the optimizer cannot detect an incumbent. Did "
                             "you set the incumbent (e.g. after restoring state)?")
        elif self.stats.ta_runs == 0 and self.incumbent is not None:
            raise ValueError("An incumbent is specified, but there are no runs "
                             "recorded in the Stats-object. If you're restoring "
                             "a state, please provide the Stats-object.")
        else:
            # Restoring state!
            self.logger.info("State Restored! Starting optimization with "
                             "incumbent %s", self.incumbent)
            self.logger.info("State restored with following budget:")
            self.stats.print_stats()

    def run(self):
        """Runs the Bayesian optimization loop

        Returns
        ----------
        incumbent: np.array(1, H)
            The best found configuration
        """
        self.start()

        # Main BO loop
        while True:
            if self.scenario.shared_model:
                pSMAC.read(run_history=self.runhistory,
                           output_dirs=self.scenario.input_psmac_dirs,
                           configuration_space=self.config_space,
                           logger=self.logger)

            start_time = time.time()
            X, Y = self.rh2EPM.transform(self.runhistory)
            self.logger.debug("Search for next configuration")
            # get all found configurations sorted according to acq
            challengers = self.choose_next(X, Y)

            time_spent = time.time() - start_time
            time_left = self._get_timebound_for_intensification(time_spent)

            self.logger.debug("Intensify")

            self.incumbent, inc_perf = self.intensifier.intensify(
                challengers=challengers,
                incumbent=self.incumbent,
                run_history=self.runhistory,
                aggregate_func=self.aggregate_func,
                time_bound=max(self.intensifier._min_time, time_left))

            if self.scenario.shared_model:
                pSMAC.write(run_history=self.runhistory,
                            output_directory=self.scenario.output_dir_for_this_run)

            logging.debug("Remaining budget: %f (wallclock), %f (ta costs), %f (target runs)" % (
                self.stats.get_remaing_time_budget(),
                self.stats.get_remaining_ta_budget(),
                self.stats.get_remaining_ta_runs()))

            if self.stats.is_budget_exhausted():
                break

            self.stats.print_stats(debug_out=True)

        return self.incumbent

    def choose_next(self, X: np.ndarray, Y: np.ndarray, incumbent_value: float=None):
        """Choose next candidate solution with Bayesian optimization. The 
        suggested configurations depend on the argument ``acq_optimizer`` to
        the ``SMBO`` class.

        Parameters
        ----------
        X : (N, D) numpy array
            Each row contains a configuration and one set of
            instance features.
        Y : (N, O) numpy array
            The function values for each configuration instance pair.
        incumbent_value: float
            Cost value of incumbent configuration
            (required for acquisition function);
            if not given, it will be inferred from runhistory;
            if not given and runhistory is empty,
            it will raise a ValueError

        Returns
        -------
        Iterable
        """
        import pdb
        pdb.set_trace()
        if X.shape[0] == 0:
            # Only return a single point to avoid an overly high number of
            # random search iterations
            return self._random_search.maximize(runhistory=self.runhistory, stats=self.stats, num_points=1)

        self.model.train(X, Y)

        if incumbent_value is None:
            if self.runhistory.empty():
                raise ValueError("Runhistory is empty and the cost value of the incumbent is unknown.")
            incumbent_value = self.runhistory.get_cost(self.incumbent)

        self.acquisition_func.update(model=self.model, eta=incumbent_value)

        challengers = self.acq_optimizer.maximize(self.runhistory, self.stats, 5000)
        return challengers

    def validate(self, config_mode='inc', instance_mode='train+test',
                 repetitions=1, use_epm=False, n_jobs=-1, backend='threading'):
        """Create validator-object and run validation, using
        scenario-information, runhistory from smbo and tae_runner from intensify

        Parameters
        ----------
        config_mode: str or list<Configuration>
            string or directly a list of Configuration
            str from [def, inc, def+inc, wallclock_time, cpu_time, all]
            time evaluates at cpu- or wallclock-timesteps of:
            [max_time/2^0, max_time/2^1, max_time/2^3, ..., default]
            with max_time being the highest recorded time
        instance_mode: string
            what instances to use for validation, from [train, test, train+test]
        repetitions: int
            number of repetitions in nondeterministic algorithms (in
            deterministic will be fixed to 1)
        use_epm: bool
            whether to use an EPM instead of evaluating all runs with the TAE
        n_jobs: int
            number of parallel processes used by joblib

        Returns
        -------
        runhistory: RunHistory
            runhistory containing all specified runs
        """
        traj_fn = os.path.join(self.scenario.output_dir_for_this_run, "traj_aclib2.json")
        trajectory = TrajLogger.read_traj_aclib_format(fn=traj_fn, cs=self.scenario.cs)
        new_rh_path = os.path.join(self.scenario.output_dir_for_this_run, "validated_runhistory.json")

        validator = Validator(self.scenario, trajectory, self.rng)
        if use_epm:
            new_rh = validator.validate_epm(config_mode=config_mode,
                                            instance_mode=instance_mode,
                                            repetitions=repetitions,
                                            runhistory=self.runhistory,
                                            output=new_rh_path)
        else:
            new_rh = validator.validate(config_mode, instance_mode, repetitions,
                                        n_jobs, backend, self.runhistory,
                                        self.intensifier.tae_runner,
                                        new_rh_path)
        return new_rh

    def _get_timebound_for_intensification(self, time_spent):
        """Calculate time left for intensify from the time spent on
        choosing challengers using the fraction of time intended for
        intensification (which is specified in
        scenario.intensification_percentage).

        Parameters
        ----------
        time_spent : float

        Returns
        -------
        time_left : float
        """
        frac_intensify = self.scenario.intensification_percentage
        if frac_intensify <= 0 or frac_intensify >= 1:
            raise ValueError("The value for intensification_percentage-"
                             "option must lie in (0,1), instead: %.2f" %
                             (frac_intensify))
        total_time = time_spent / (1 - frac_intensify)
        time_left = frac_intensify * total_time
        self.logger.debug("Total time: %.4f, time spent on choosing next "
                          "configurations: %.4f (%.2f), time left for "
                          "intensification: %.4f (%.2f)" %
                          (total_time, time_spent, (1 - frac_intensify), time_left, frac_intensify))
        return time_left
Exemplo n.º 4
0
class SMBO(object):
    """Interface that contains the main Bayesian optimization loop

    Attributes
    ----------
    logger
    incumbent
    scenario
    config_space
    stats
    initial_design
    runhistory
    rh2EPM
    intensifier
    aggregate_func
    num_run
    model
    acq_optimizer
    acquisition_func
    rng
    random_configuration_chooser
    """
    def __init__(self,
                 scenario: Scenario,
                 stats: Stats,
                 initial_design: InitialDesign,
                 runhistory: RunHistory,
                 runhistory2epm: AbstractRunHistory2EPM,
                 intensifier: Intensifier,
                 aggregate_func: callable,
                 num_run: int,
                 model: RandomForestWithInstances,
                 acq_optimizer: AcquisitionFunctionMaximizer,
                 acquisition_func: AbstractAcquisitionFunction,
                 rng: np.random.RandomState,
                 restore_incumbent: Configuration = None,
                 random_configuration_chooser: typing.Union[
                     ChooserNoCoolDown,
                     ChooserLinearCoolDown] = ChooserNoCoolDown(2.0),
                 predict_incumbent: bool = True):
        """
        Interface that contains the main Bayesian optimization loop

        Parameters
        ----------
        scenario: smac.scenario.scenario.Scenario
            Scenario object
        stats: Stats
            statistics object with configuration budgets
        initial_design: InitialDesign
            initial sampling design
        runhistory: RunHistory
            runhistory with all runs so far
        runhistory2epm : AbstractRunHistory2EPM
            Object that implements the AbstractRunHistory2EPM to convert runhistory
            data into EPM data
        intensifier: Intensifier
            intensification of new challengers against incumbent configuration
            (probably with some kind of racing on the instances)
        aggregate_func: callable
            how to aggregate the runs in the runhistory to get the performance of a
             configuration
        num_run: int
            id of this run (used for pSMAC)
        model: RandomForestWithInstances
            empirical performance model (right now, we support only
            RandomForestWithInstances)
        acq_optimizer: AcquisitionFunctionMaximizer
            Optimizer of acquisition function.
        acquisition_function : AcquisitionFunction
            Object that implements the AbstractAcquisitionFunction (i.e., infill
            criterion for acq_optimizer)
        restore_incumbent: Configuration
            incumbent to be used from the start. ONLY used to restore states.
        rng: np.random.RandomState
            Random number generator
        random_configuration_chooser
            Chooser for random configuration -- one of
            * ChooserNoCoolDown(modulus)
            * ChooserLinearCoolDown(start_modulus, modulus_increment, end_modulus)
        predict_incumbent: bool
            Use predicted performance of incumbent instead of observed performance
        """

        self.logger = logging.getLogger(self.__module__ + "." +
                                        self.__class__.__name__)
        self.incumbent = restore_incumbent

        self.scenario = scenario
        self.config_space = scenario.cs
        self.stats = stats
        self.initial_design = initial_design
        self.runhistory = runhistory
        self.rh2EPM = runhistory2epm
        self.intensifier = intensifier
        self.aggregate_func = aggregate_func
        self.num_run = num_run
        self.model = model
        self.acq_optimizer = acq_optimizer
        self.acquisition_func = acquisition_func
        self.rng = rng
        self.random_configuration_chooser = random_configuration_chooser

        self._random_search = RandomSearch(acquisition_func, self.config_space,
                                           rng)

        self.predict_incumbent = predict_incumbent

    def start(self):
        """Starts the Bayesian Optimization loop.
        Detects whether we the optimization is restored from previous state.
        """
        self.stats.start_timing()
        # Initialization, depends on input
        if self.stats.ta_runs == 0 and self.incumbent is None:
            self.incumbent = self.initial_design.run()

        elif self.stats.ta_runs > 0 and self.incumbent is None:
            raise ValueError(
                "According to stats there have been runs performed, "
                "but the optimizer cannot detect an incumbent. Did "
                "you set the incumbent (e.g. after restoring state)?")
        elif self.stats.ta_runs == 0 and self.incumbent is not None:
            raise ValueError(
                "An incumbent is specified, but there are no runs "
                "recorded in the Stats-object. If you're restoring "
                "a state, please provide the Stats-object.")
        else:
            # Restoring state!
            self.logger.info(
                "State Restored! Starting optimization with "
                "incumbent %s", self.incumbent)
            self.logger.info("State restored with following budget:")
            self.stats.print_stats()

        # To be on the safe side -> never return "None" as incumbent
        if not self.incumbent:
            self.incumbent = self.scenario.cs.get_default_configuration()

    def run(self):
        """Runs the Bayesian optimization loop

        Returns
        ----------
        incumbent: np.array(1, H)
            The best found configuration
        """
        self.start()

        # Main BO loop
        while True:
            if self.scenario.shared_model:
                pSMAC.read(run_history=self.runhistory,
                           output_dirs=self.scenario.input_psmac_dirs,
                           configuration_space=self.config_space,
                           logger=self.logger)

            start_time = time.time()
            X, Y = self.rh2EPM.transform(self.runhistory)

            self.logger.debug("Search for next configuration")
            # get all found configurations sorted according to acq
            challengers = self.choose_next(X, Y)

            time_spent = time.time() - start_time
            time_left = self._get_timebound_for_intensification(time_spent)

            self.logger.debug("Intensify")

            self.incumbent, inc_perf = self.intensifier.intensify(
                challengers=challengers,
                incumbent=self.incumbent,
                run_history=self.runhistory,
                aggregate_func=self.aggregate_func,
                time_bound=max(self.intensifier._min_time, time_left))

            if self.scenario.shared_model:
                pSMAC.write(
                    run_history=self.runhistory,
                    output_directory=self.scenario.output_dir_for_this_run,
                    logger=self.logger)

            logging.debug(
                "Remaining budget: %f (wallclock), %f (ta costs), %f (target runs)"
                % (self.stats.get_remaing_time_budget(),
                   self.stats.get_remaining_ta_budget(),
                   self.stats.get_remaining_ta_runs()))

            if self.stats.is_budget_exhausted():
                break

            self.stats.print_stats(debug_out=True)

        return self.incumbent

    def choose_next(self,
                    X: np.ndarray,
                    Y: np.ndarray,
                    incumbent_value: float = None):
        """Choose next candidate solution with Bayesian optimization. The
        suggested configurations depend on the argument ``acq_optimizer`` to
        the ``SMBO`` class.

        Parameters
        ----------
        X : (N, D) numpy array
            Each row contains a configuration and one set of
            instance features.
        Y : (N, O) numpy array
            The function values for each configuration instance pair.
        incumbent_value: float
            Cost value of incumbent configuration
            (required for acquisition function);
            if not given, it will be inferred from runhistory;
            if not given and runhistory is empty,
            it will raise a ValueError

        Returns
        -------
        Iterable
        """
        if X.shape[0] == 0:
            # Only return a single point to avoid an overly high number of
            # random search iterations
            return self._random_search.maximize(runhistory=self.runhistory,
                                                stats=self.stats,
                                                num_points=1)

        self.model.train(X, Y)

        if incumbent_value is None:
            if self.runhistory.empty():
                raise ValueError("Runhistory is empty and the cost value of "
                                 "the incumbent is unknown.")
            incumbent_value = self._get_incumbent_value()

        self.acquisition_func.update(model=self.model,
                                     eta=incumbent_value,
                                     num_data=len(self.runhistory.data))

        challengers = self.acq_optimizer.maximize(
            runhistory=self.runhistory,
            stats=self.stats,
            num_points=self.scenario.acq_opt_challengers,
            random_configuration_chooser=self.random_configuration_chooser)
        return challengers

    def _get_incumbent_value(self):
        ''' get incumbent value either from runhistory
            or from best predicted performance on configs in runhistory
            (depends on self.predict_incumbent)"

            Return
            ------
            float
        '''
        if self.predict_incumbent:
            configs = convert_configurations_to_array(
                self.runhistory.get_all_configs())
            costs = list(
                map(
                    lambda config: self.model.
                    predict_marginalized_over_instances(config.reshape(
                        (1, -1)))[0][0][0],
                    configs,
                ))
            incumbent_value = np.min(costs)
            # won't need log(y) if EPM was already trained on log(y)

        else:
            if self.runhistory.empty():
                raise ValueError("Runhistory is empty and the cost value of "
                                 "the incumbent is unknown.")
            incumbent_value = self.runhistory.get_cost(self.incumbent)
            # It's unclear how to do this for inv scaling and potential future scaling. This line should be changed if
            # necessary
            incumbent_value_as_array = np.array(incumbent_value).reshape(
                (1, 1))
            incumbent_value = self.rh2EPM.transform_response_values(
                incumbent_value_as_array)
            incumbent_value = incumbent_value[0][0]

        return incumbent_value

    def validate(self,
                 config_mode='inc',
                 instance_mode='train+test',
                 repetitions=1,
                 use_epm=False,
                 n_jobs=-1,
                 backend='threading'):
        """Create validator-object and run validation, using
        scenario-information, runhistory from smbo and tae_runner from intensify

        Parameters
        ----------
        config_mode: str or list<Configuration>
            string or directly a list of Configuration
            str from [def, inc, def+inc, wallclock_time, cpu_time, all]
            time evaluates at cpu- or wallclock-timesteps of:
            [max_time/2^0, max_time/2^1, max_time/2^3, ..., default]
            with max_time being the highest recorded time
        instance_mode: string
            what instances to use for validation, from [train, test, train+test]
        repetitions: int
            number of repetitions in nondeterministic algorithms (in
            deterministic will be fixed to 1)
        use_epm: bool
            whether to use an EPM instead of evaluating all runs with the TAE
        n_jobs: int
            number of parallel processes used by joblib

        Returns
        -------
        runhistory: RunHistory
            runhistory containing all specified runs
        """
        if isinstance(config_mode, str):
            traj_fn = os.path.join(self.scenario.output_dir_for_this_run,
                                   "traj_aclib2.json")
            trajectory = TrajLogger.read_traj_aclib_format(fn=traj_fn,
                                                           cs=self.scenario.cs)
        else:
            trajectory = None
        if self.scenario.output_dir_for_this_run:
            new_rh_path = os.path.join(self.scenario.output_dir_for_this_run,
                                       "validated_runhistory.json")
        else:
            new_rh_path = None

        validator = Validator(self.scenario, trajectory, self.rng)
        if use_epm:
            new_rh = validator.validate_epm(config_mode=config_mode,
                                            instance_mode=instance_mode,
                                            repetitions=repetitions,
                                            runhistory=self.runhistory,
                                            output_fn=new_rh_path)
        else:
            new_rh = validator.validate(config_mode,
                                        instance_mode,
                                        repetitions,
                                        n_jobs,
                                        backend,
                                        self.runhistory,
                                        self.intensifier.tae_runner,
                                        output_fn=new_rh_path)
        return new_rh

    def _get_timebound_for_intensification(self, time_spent: float):
        """Calculate time left for intensify from the time spent on
        choosing challengers using the fraction of time intended for
        intensification (which is specified in
        scenario.intensification_percentage).

        Parameters
        ----------
        time_spent : float

        Returns
        -------
        time_left : float
        """
        frac_intensify = self.scenario.intensification_percentage
        if frac_intensify <= 0 or frac_intensify >= 1:
            raise ValueError("The value for intensification_percentage-"
                             "option must lie in (0,1), instead: %.2f" %
                             (frac_intensify))
        total_time = time_spent / (1 - frac_intensify)
        time_left = frac_intensify * total_time
        self.logger.debug("Total time: %.4f, time spent on choosing next "
                          "configurations: %.4f (%.2f), time left for "
                          "intensification: %.4f (%.2f)" %
                          (total_time, time_spent,
                           (1 - frac_intensify), time_left, frac_intensify))
        return time_left

    def _component_builder(self, conf:typing.Union[Configuration, dict]) \
        -> typing.Tuple[AbstractAcquisitionFunction, AbstractEPM]:
        """
            builds new Acquisition function object
            and EPM object and returns these

            Parameters
            ----------
            conf: typing.Union[Configuration, dict]
                configuration specificing "model" and "acq_func"

            Returns
            -------
            typing.Tuple[AbstractAcquisitionFunction, AbstractEPM]

        """
        types, bounds = get_types(
            self.config_space, instance_features=self.scenario.feature_array)

        if conf["model"] == "RF":
            model = RandomForestWithInstances(
                configspace=self.config_space,
                types=types,
                bounds=bounds,
                instance_features=self.scenario.feature_array,
                seed=self.rng.randint(MAXINT),
                pca_components=conf.get("pca_dim", self.scenario.PCA_DIM),
                log_y=conf.get("log_y", self.scenario.transform_y
                               in ["LOG", "LOGS"]),
                num_trees=conf.get("num_trees", self.scenario.rf_num_trees),
                do_bootstrapping=conf.get("do_bootstrapping",
                                          self.scenario.rf_do_bootstrapping),
                ratio_features=conf.get("ratio_features",
                                        self.scenario.rf_ratio_features),
                min_samples_split=conf.get("min_samples_split",
                                           self.scenario.rf_min_samples_split),
                min_samples_leaf=conf.get("min_samples_leaf",
                                          self.scenario.rf_min_samples_leaf),
                max_depth=conf.get("max_depth", self.scenario.rf_max_depth),
            )

        elif conf["model"] == "GP":
            from smac.epm.gp_kernels import ConstantKernel, HammingKernel, WhiteKernel, Matern

            cov_amp = ConstantKernel(
                2.0,
                constant_value_bounds=(np.exp(-10), np.exp(2)),
                prior=LognormalPrior(mean=0.0, sigma=1.0, rng=self.rng),
            )

            cont_dims = np.nonzero(types == 0)[0]
            cat_dims = np.nonzero(types != 0)[0]

            if len(cont_dims) > 0:
                exp_kernel = Matern(
                    np.ones([len(cont_dims)]),
                    [(np.exp(-10), np.exp(2)) for _ in range(len(cont_dims))],
                    nu=2.5,
                    operate_on=cont_dims,
                )

            if len(cat_dims) > 0:
                ham_kernel = HammingKernel(
                    np.ones([len(cat_dims)]),
                    [(np.exp(-10), np.exp(2)) for _ in range(len(cat_dims))],
                    operate_on=cat_dims,
                )
            noise_kernel = WhiteKernel(
                noise_level=1e-8,
                noise_level_bounds=(np.exp(-25), np.exp(2)),
                prior=HorseshoePrior(scale=0.1, rng=self.rng),
            )

            if len(cont_dims) > 0 and len(cat_dims) > 0:
                # both
                kernel = cov_amp * (exp_kernel * ham_kernel) + noise_kernel
            elif len(cont_dims) > 0 and len(cat_dims) == 0:
                # only cont
                kernel = cov_amp * exp_kernel + noise_kernel
            elif len(cont_dims) == 0 and len(cat_dims) > 0:
                # only cont
                kernel = cov_amp * ham_kernel + noise_kernel
            else:
                raise ValueError()

            n_mcmc_walkers = 3 * len(kernel.theta)
            if n_mcmc_walkers % 2 == 1:
                n_mcmc_walkers += 1

            model = GaussianProcessMCMC(
                self.config_space,
                types=types,
                bounds=bounds,
                kernel=kernel,
                n_mcmc_walkers=n_mcmc_walkers,
                chain_length=250,
                burnin_steps=250,
                normalize_y=True,
                seed=self.rng.randint(low=0, high=10000),
            )

        if conf["acq_func"] == "EI":
            acq = EI(model=model, par=conf.get("par_ei", 0))
        elif conf["acq_func"] == "LCB":
            acq = LCB(model=model, par=conf.get("par_lcb", 0))
        elif conf["acq_func"] == "PI":
            acq = PI(model=model, par=conf.get("par_pi", 0))
        elif conf["acq_func"] == "LogEI":
            # par value should be in log-space
            acq = LogEI(model=model, par=conf.get("par_logei", 0))

        return acq, model

    def _get_acm_cs(self):
        """
            returns a configuration space
            designed for querying ~smac.optimizer.smbo._component_builder

            Returns
            -------
                ConfigurationSpace
        """

        cs = ConfigurationSpace()
        cs.seed(self.rng.randint(0, 2**20))

        if 'gp' in smac.extras_installed:
            model = CategoricalHyperparameter("model", choices=("RF", "GP"))
        else:
            model = Constant("model", value="RF")

        num_trees = Constant("num_trees", value=10)
        bootstrap = CategoricalHyperparameter("do_bootstrapping",
                                              choices=(True, False),
                                              default_value=True)
        ratio_features = CategoricalHyperparameter("ratio_features",
                                                   choices=(3 / 6, 4 / 6,
                                                            5 / 6, 1),
                                                   default_value=1)
        min_split = UniformIntegerHyperparameter("min_samples_to_split",
                                                 lower=1,
                                                 upper=10,
                                                 default_value=2)
        min_leaves = UniformIntegerHyperparameter("min_samples_in_leaf",
                                                  lower=1,
                                                  upper=10,
                                                  default_value=1)

        cs.add_hyperparameters([
            model, num_trees, bootstrap, ratio_features, min_split, min_leaves
        ])

        inc_num_trees = InCondition(num_trees, model, ["RF"])
        inc_bootstrap = InCondition(bootstrap, model, ["RF"])
        inc_ratio_features = InCondition(ratio_features, model, ["RF"])
        inc_min_split = InCondition(min_split, model, ["RF"])
        inc_min_leavs = InCondition(min_leaves, model, ["RF"])

        cs.add_conditions([
            inc_num_trees, inc_bootstrap, inc_ratio_features, inc_min_split,
            inc_min_leavs
        ])

        acq = CategoricalHyperparameter("acq_func",
                                        choices=("EI", "LCB", "PI", "LogEI"))
        par_ei = UniformFloatHyperparameter("par_ei", lower=-10, upper=10)
        par_pi = UniformFloatHyperparameter("par_pi", lower=-10, upper=10)
        par_logei = UniformFloatHyperparameter("par_logei",
                                               lower=0.001,
                                               upper=100,
                                               log=True)
        par_lcb = UniformFloatHyperparameter("par_lcb",
                                             lower=0.0001,
                                             upper=0.9999)

        cs.add_hyperparameters([acq, par_ei, par_pi, par_logei, par_lcb])

        inc_par_ei = InCondition(par_ei, acq, ["EI"])
        inc_par_pi = InCondition(par_pi, acq, ["PI"])
        inc_par_logei = InCondition(par_logei, acq, ["LogEI"])
        inc_par_lcb = InCondition(par_lcb, acq, ["LCB"])

        cs.add_conditions([inc_par_ei, inc_par_pi, inc_par_logei, inc_par_lcb])

        return cs
Exemplo n.º 5
0
class SMBO(object):
    """Interface that contains the main Bayesian optimization loop

    Attributes
    ----------
    logger
    incumbent
    scenario
    config_space
    stats
    initial_design
    runhistory
    rh2EPM
    intensifier
    aggregate_func
    num_run
    model
    acq_optimizer
    acquisition_func
    rng
    """
    def __init__(
        self,
        scenario: Scenario,
        stats: Stats,
        initial_design: InitialDesign,
        runhistory: RunHistory,
        runhistory2epm: AbstractRunHistory2EPM,
        intensifier: Intensifier,
        aggregate_func: callable,
        num_run: int,
        model: AbstractEPM,
        acq_optimizer: AcquisitionFunctionMaximizer,
        acquisition_func: AbstractAcquisitionFunction,
        rng: np.random.RandomState,
        restore_incumbent: Configuration = None,
        # 强行在smbo中加入训练集和验证集
        hoag: AbstractHOAG = None,
        # 参数服务器worker的脚本文件路径
        #server: Server = None,
        bayesian_optimization: bool = False):
        """
        Interface that contains the main Bayesian optimization loop

        Parameters
        ----------
        scenario: smac.scenario.scenario.Scenario
            Scenario object
        stats: Stats
            statistics object with configuration budgets
        initial_design: InitialDesign
            initial sampling design
        runhistory: RunHistory
            runhistory with all runs so far
        runhistory2epm : AbstractRunHistory2EPM
            Object that implements the AbstractRunHistory2EPM to convert runhistory
            data into EPM data
        intensifier: Intensifier
            intensification of new challengers against incumbent configuration
            (probably with some kind of racing on the instances)
        aggregate_func: callable
            how to aggregate the runs in the runhistory to get the performance of a
             configuration
        num_run: int
            id of this run (used for pSMAC)
        model: AbstractEPM
            empirical performance model (right now, we support only
            AbstractEPM)
        acq_optimizer: AcquisitionFunctionMaximizer
            Optimizer of acquisition function.
        acquisition_function : AcquisitionFunction
            Object that implements the AbstractAcquisitionFunction (i.e., infill
            criterion for acq_optimizer)
        restore_incumbent: Configuration
            incumbent to be used from the start. ONLY used to restore states.
        rng: np.random.RandomState
            Random number generator
        """

        self.logger = logging.getLogger(self.__module__ + "." +
                                        self.__class__.__name__)
        self.incumbent = restore_incumbent

        self.scenario = scenario
        self.config_space = scenario.cs
        self.stats = stats
        self.initial_design = initial_design
        self.runhistory = runhistory
        self.rh2EPM = runhistory2epm
        self.intensifier = intensifier
        self.aggregate_func = aggregate_func
        self.num_run = num_run
        self.model = model
        self.acq_optimizer = acq_optimizer
        self.acquisition_func = acquisition_func
        self.rng = rng
        # hoag的类,直接使用hoag的fit,predict等
        self.hoag = hoag
        # 保存server端进程
        #self.server = server
        self.server = None
        self.bayesian_optimization = bayesian_optimization

        self._random_search = RandomSearch(acquisition_func, self.config_space,
                                           rng)

    def start(self):
        """Starts the Bayesian Optimization loop.
        Detects whether we the optimization is restored from previous state.
        """
        self.stats.start_timing()
        # Initialization, depends on input
        if self.stats.ta_runs == 0 and self.incumbent is None:
            try:
                if self.server is None:
                    self.incumbent = self.initial_design.run()
                else:
                    # 由worker自己产生第一个incumbent,然后由server接收其中的一个
                    self.incumbent, new_runhistory = self.server.pull()
                    self.runhistory.update(new_runhistory)
            except FirstRunCrashedException as err:
                if self.scenario.abort_on_first_run_crash:
                    raise
        elif self.stats.ta_runs > 0 and self.incumbent is None:
            raise ValueError(
                "According to stats there have been runs performed, "
                "but the optimizer cannot detect an incumbent. Did "
                "you set the incumbent (e.g. after restoring state)?")
        elif self.stats.ta_runs == 0 and self.incumbent is not None:
            raise ValueError(
                "An incumbent is specified, but there are no runs "
                "recorded in the Stats-object. If you're restoring "
                "a state, please provide the Stats-object.")
        else:
            # Restoring state!
            self.logger.info(
                "State Restored! Starting optimization with "
                "incumbent %s", self.incumbent)
            self.logger.info("State restored with following budget:")
            self.stats.print_stats()

    def run(self):
        """Runs the Bayesian optimization loop

        Returns
        ----------
        incumbent: np.array(1, H)
            The best found configuration
        """
        self.start()
        # 设置一个counter
        counter = 0
        # Main BO loop
        while True:
            # 打印每轮SMBO的最优结果(包括首轮SMBO 0)
            print('SMBO ' + str(counter) + ': ' +
                  str(self.runhistory.get_cost(self.incumbent)))
            counter += 1

            if self.scenario.shared_model:
                pSMAC.read(run_history=self.runhistory,
                           output_dirs=self.scenario.input_psmac_dirs,
                           configuration_space=self.config_space,
                           logger=self.logger)

            start_time = time.time()
            X, Y = self.rh2EPM.transform(self.runhistory)

            self.logger.debug("Search for next configuration")
            # get all found configurations sorted according to acq
            challengers = self.choose_next(X, Y)

            time_spent = time.time() - start_time
            time_left = self._get_timebound_for_intensification(time_spent)

            self.logger.debug("Intensify")

            if self.server is None:
                self.incumbent, inc_perf = self.intensifier.intensify(
                    challengers=challengers,
                    incumbent=self.incumbent,
                    run_history=self.runhistory,
                    aggregate_func=self.aggregate_func,
                    time_bound=max(self.intensifier._min_time, time_left))
            else:
                # 从worker读取loss,加入history再运行新的challengers
                print(time_left)
                self.server.push(incumbent=self.incumbent,
                                 runhistory=self.runhistory,
                                 challengers=challengers.challengers,
                                 time_left=time_left)
                # 从worker读取runhistory,并merge到self.runhistory
                incumbent, new_runhistory = self.server.pull()
                self.runhistory.update(new_runhistory)
                # 更新了runhistory之后,应该找寻是否存在新的incumbent
                # 因为worker没有完整的
                runhistory_old = self.runhistory.get_history_for_config(
                    self.incumbent)
                runhistory_new = self.runhistory.get_history_for_config(
                    incumbent)
                # 找寻cost最小值
                lowest_cost_old = min([cost[0] for cost in runhistory_old])
                lowest_cost_new = min([cost[0] for cost in runhistory_new])
                if lowest_cost_new < lowest_cost_old:
                    # 替换为新的incumbent
                    self.incumbent = incumbent
                """可以考虑用这个函数
                new_incumbent = self._compare_configs(
                    incumbent=incumbent, challenger=challenger,
                    run_history=run_history,
                    aggregate_func=aggregate_func,
                    log_traj=log_traj)
                """

            if self.scenario.shared_model:
                pSMAC.write(
                    run_history=self.runhistory,
                    output_directory=self.scenario.output_dir_for_this_run)

            logging.debug(
                "Remaining budget: %f (wallclock), %f (ta costs), %f (target runs)"
                % (self.stats.get_remaing_time_budget(),
                   self.stats.get_remaining_ta_budget(),
                   self.stats.get_remaining_ta_runs()))

            if self.stats.is_budget_exhausted():
                break

            self.stats.print_stats(debug_out=True)

        return self.incumbent

    def choose_next(self,
                    X: np.ndarray,
                    Y: np.ndarray,
                    incumbent_value: float = None):
        """Choose next candidate solution with Bayesian optimization. The 
        suggested configurations depend on the argument ``acq_optimizer`` to
        the ``SMBO`` class.

        Parameters
        ----------
        X : (N, D) numpy array
            Each row contains a configuration and one set of
            instance features.
        Y : (N, O) numpy array
            The function values for each configuration instance pair.
        incumbent_value: float
            Cost value of incumbent configuration
            (required for acquisition function);
            if not given, it will be inferred from runhistory;
            if not given and runhistory is empty,
            it will raise a ValueError

        Returns
        -------
        Iterable
        """
        if X.shape[0] == 0:
            # Only return a single point to avoid an overly high number of
            # random search iterations
            return self._random_search.maximize(runhistory=self.runhistory,
                                                stats=self.stats,
                                                num_points=1)

        # 消去完全相同的行
        X, Y = remove_same_values(X, Y)
        print(X.shape)

        # 如果指定了hoag函数,则进行调用
        if self.hoag is not None:

            # 初始化梯度数组
            gradient = np.zeros(X.shape)
            # 对每组X,计算对应的梯度(此处有大量重复计算)
            for i in range(X.shape[0]):
                self.hoag.fit(X[i, :])
                gradient[i, :] = self.hoag.predict_gradient()

            X = X.flatten()
            ind = np.argsort(X)
            gradient = gradient.flatten()[ind].reshape(-1, 1)
            X = X[ind].reshape(-1, 1)
            Y = Y.flatten()[ind].reshape(-1, 1)
            self.model.train(X, Y, gradient=gradient)

        elif self.bayesian_optimization:
            # gpr使用的参数
            gp_params = {"alpha": 1e-5, "n_restarts_optimizer": 2}
            # 从configspace读取超参的范围
            pbounds = {}
            for key in self.scenario.cs._hyperparameters.keys():
                # 只处理float类型的超参
                hyperparamter = self.scenario.cs._hyperparameters[key],
                if isinstance(hyperparamter.default_value, float):
                    pbounds[key] = (hyperparamter.lower, hyperparamter.upper)
            # 初始化bayesian_optimization
            bo = BayesianOptimization(X, Y, pbounds=pbounds, verbose=False)
            # 预测下一个ei取得点
            newX = bo.maximize(acq="ei", **gp_params)
            # 将超参数组再转化为Configuration
            challengers = [Configuration(self.scenario.cs, x) for x in newX]
            return challengers

        else:
            self.model.train(X, Y)
        # 打印X和Y的值
        # print("X: ", X.flatten())
        # print("Y: ", Y.flatten())
        # print("Y_pred: ", self.model.predict(X))
        # if self.hoag is not None:
        #    print("G: ", gradient)

        if incumbent_value is None:
            if self.runhistory.empty():
                raise ValueError("Runhistory is empty and the cost value of "
                                 "the incumbent is unknown.")
            incumbent_value = self.runhistory.get_cost(self.incumbent)

        self.acquisition_func.update(model=self.model, eta=incumbent_value)

        challengers = self.acq_optimizer.maximize(
            # 初始为5000,提升速度调成500
            self.runhistory,
            self.stats,
            500)
        return challengers

    def validate(self,
                 config_mode='inc',
                 instance_mode='train+test',
                 repetitions=1,
                 use_epm=False,
                 n_jobs=-1,
                 backend='threading'):
        """Create validator-object and run validation, using
        scenario-information, runhistory from smbo and tae_runner from intensify

        Parameters
        ----------
        config_mode: str or list<Configuration>
            string or directly a list of Configuration
            str from [def, inc, def+inc, wallclock_time, cpu_time, all]
            time evaluates at cpu- or wallclock-timesteps of:
            [max_time/2^0, max_time/2^1, max_time/2^3, ..., default]
            with max_time being the highest recorded time
        instance_mode: string
            what instances to use for validation, from [train, test, train+test]
        repetitions: int
            number of repetitions in nondeterministic algorithms (in
            deterministic will be fixed to 1)
        use_epm: bool
            whether to use an EPM instead of evaluating all runs with the TAE
        n_jobs: int
            number of parallel processes used by joblib

        Returns
        -------
        runhistory: RunHistory
            runhistory containing all specified runs
        """
        traj_fn = os.path.join(self.scenario.output_dir_for_this_run,
                               "traj_aclib2.json")
        trajectory = TrajLogger.read_traj_aclib_format(fn=traj_fn,
                                                       cs=self.scenario.cs)
        new_rh_path = os.path.join(self.scenario.output_dir_for_this_run,
                                   "validated_runhistory.json")

        validator = Validator(self.scenario, trajectory, self.rng)
        if use_epm:
            new_rh = validator.validate_epm(config_mode=config_mode,
                                            instance_mode=instance_mode,
                                            repetitions=repetitions,
                                            runhistory=self.runhistory,
                                            output=new_rh_path)
        else:
            new_rh = validator.validate(config_mode,
                                        instance_mode,
                                        repetitions,
                                        n_jobs,
                                        backend,
                                        self.runhistory,
                                        self.intensifier.tae_runner,
                                        output=new_rh_path)
        return new_rh

    def _get_timebound_for_intensification(self, time_spent):
        """Calculate time left for intensify from the time spent on
        choosing challengers using the fraction of time intended for
        intensification (which is specified in
        scenario.intensification_percentage).

        Parameters
        ----------
        time_spent : float

        Returns
        -------
        time_left : float
        """
        frac_intensify = self.scenario.intensification_percentage
        if frac_intensify <= 0 or frac_intensify >= 1:
            raise ValueError("The value for intensification_percentage-"
                             "option must lie in (0,1), instead: %.2f" %
                             (frac_intensify))
        total_time = time_spent / (1 - frac_intensify)
        time_left = frac_intensify * total_time
        self.logger.debug("Total time: %.4f, time spent on choosing next "
                          "configurations: %.4f (%.2f), time left for "
                          "intensification: %.4f (%.2f)" %
                          (total_time, time_spent,
                           (1 - frac_intensify), time_left, frac_intensify))
        return time_left