Exemplo n.º 1
0
def test_run_script(use_cluster):
    data = np.array([[1, 2, 3, 4, 5]])

    c = Client(None, use_cluster)
    c.put_tensor("script-test-data", data)
    c.set_function("one-to-one", one_to_one)
    c.run_script("one-to-one", "one_to_one", ["script-test-data"], ["script-test-out"])
    out = c.get_tensor("script-test-out")
    assert out == 5
Exemplo n.º 2
0
def test_torch_inference(mock_model, use_cluster):
    # get model and set into database
    model = mock_model.create_torch_cnn()
    c = Client(None, use_cluster)
    c.set_model("torch_cnn", model, "TORCH")

    # setup input tensor
    data = torch.rand(1, 1, 3, 3).numpy()
    c.put_tensor("torch_cnn_input", data)

    # run model and get output
    c.run_model("torch_cnn",
                inputs=["torch_cnn_input"],
                outputs=["torch_cnn_output"])
    out_data = c.get_tensor("torch_cnn_output")
    assert out_data.shape == (1, 1, 1, 1)
Exemplo n.º 3
0
def test_run_script_multi(use_cluster):
    data = np.array([[1, 2, 3, 4]])
    data_2 = np.array([[5, 6, 7, 8]])

    c = Client(None, use_cluster)
    c.put_tensor("srpt-multi-out-data-1", data)
    c.put_tensor("srpt-multi-out-data-2", data_2)
    c.set_function("two-to-one", two_to_one)
    c.run_script(
        "two-to-one",
        "two_to_one",
        ["srpt-multi-out-data-1", "srpt-multi-out-data-2"],
        ["srpt-multi-out-output"],
    )
    out = c.get_tensor("srpt-multi-out-output")
    expected = np.array([4, 8])
    np.testing.assert_array_equal(
        out, expected, "Returned array from script not equal to expected result"
    )
Exemplo n.º 4
0
import argparse
import os
from smartredis import Client

parser = argparse.ArgumentParser(description="SmartRedis ensemble consumer process.")
parser.add_argument("--redis-port")
args = parser.parse_args()

# get model and set into database
c = Client(address="127.0.0.1:"+str(args.redis_port), cluster=False)

# Incoming entity prefixes are stored as a comma-separated list
# in the env variable SSKEYIN
keyin = os.getenv("SSKEYIN")
data_sources = keyin.split(",")
data_sources.sort()

for key in data_sources:
    c.set_data_source(key)
    input_exists = c.poll_tensor("product", 100, 100)
    db_tensor = c.get_tensor("product")
    print(f"Tensor for {key} is:", db_tensor)

# Connect a SmartRedis client
db_address = "127.0.0.1:6379"
client = Client(address=db_address, cluster=False)

try:
    net = Net()
    example_forward_input = torch.rand(1, 1, 3, 3)
    # Trace a module (implicitly traces `forward`) and construct a
    # `ScriptModule` with a single `forward` method
    module = torch.jit.trace(net, example_forward_input)

    # Save the traced model to a file
    torch.jit.save(module, "./torch_cnn.pt")

    # Set the model in the Redis database from the file
    client.set_model_from_file("file_cnn", "./torch_cnn.pt", "TORCH", "CPU")

    # Put a tensor in the database as a test input
    data = torch.rand(1, 1, 3, 3).numpy()
    client.put_tensor("torch_cnn_input", data)

    # Run model and retrieve the output
    client.run_model("file_cnn",
                     inputs=["torch_cnn_input"],
                     outputs=["torch_cnn_output"])
    out_data = client.get_tensor("torch_cnn_output")
finally:
    os.remove("torch_cnn.pt")
Exemplo n.º 6
0
import numpy as np
from smartredis import Client

# Connect a SmartRedis client to Redis database
db_address = "127.0.0.1:6379"
client = Client(address=db_address, cluster=False)

# Send a 2D tensor to the database
key = "2D_array"
array = np.random.randint(-10, 10, size=(10, 10))
client.put_tensor(key, array)

# Retrieve the tensor
returned_array = client.get_tensor("2D_array")
Exemplo n.º 7
0
    if keyout == "producer_0":
        c.set_data_source("producer_1" if args.exchange else "producer_0")
        data = torch.ones(1, 1, 3, 3).numpy()
        data_other = -torch.ones(1, 1, 3, 3).numpy()
    elif keyout == "producer_1":
        c.set_data_source("producer_0" if args.exchange else "producer_1")
        data = -torch.ones(1, 1, 3, 3).numpy()
        data_other = torch.ones(1, 1, 3, 3).numpy()

    # setup input tensor
    c.put_tensor("torch_cnn_input", data)

    input_exists = c.poll_tensor("torch_cnn_input", 100, 100)
    assert input_exists

    other_input = c.get_tensor("torch_cnn_input")

    if args.exchange:
        assert np.all(other_input == data_other)
    else:
        assert np.all(other_input == data)

    # run model and get output
    c.run_model("torch_cnn",
                inputs=["torch_cnn_input"],
                outputs=["torch_cnn_output"])
    output_exists = c.poll_tensor("torch_cnn_output", 100, 100)
    assert output_exists

    out_data = c.get_tensor("torch_cnn_output")
    assert out_data.shape == (1, 1, 1, 1)
Exemplo n.º 8
0
    """
    # return the highest element
    merged = torch.cat((data, data_2))
    return merged.max(1)[0]

# Connect a SmartRedis client to the Redis database
db_address = "127.0.0.1:6379"
client = Client(address=db_address, cluster=False)

# Generate some test data to feed to the two_to_one function
data = np.array([[1, 2, 3, 4]])
data_2 = np.array([[5, 6, 7, 8]])

# Put the test data into the Redis database
client.put_tensor("script-data-1", data)
client.put_tensor("script-data-2", data_2)

# Put the function into the Redis database
client.set_function("two-to-one", two_to_one)

# Run the script using the test data
client.run_script(
    "two-to-one",
    "two_to_one",
    ["script-data-1", "script-data-2"],
    ["script-multi-out-output"],
)

# Retrieve the output of the test function
out = client.get_tensor("script-multi-out-output")
Exemplo n.º 9
0
def test_bad_get_tensor(use_cluster):
    c = Client(None, use_cluster)
    with pytest.raises(RedisReplyError):
        c.get_tensor("not-a-key")