def step(self, provider_actions: Dict, dt,
             elapsed_sim_time) -> ProviderState:
        """[summary]

        Args:

        Returns:
            ProviderState: [description]
        """

        provider_state = ProviderState()

        for vehicle_id, traj in provider_actions.items():
            pose, speed = self.perform_trajectory_interpolation(dt, traj)

            provider_state.vehicles.append(
                VehicleState(
                    vehicle_id=vehicle_id,
                    vehicle_config_type="passenger",
                    pose=pose,
                    dimensions=VEHICLE_CONFIGS["passenger"].dimensions,
                    speed=speed,
                    source="TrajectoryInterpolation",
                ))

        return provider_state
Exemplo n.º 2
0
    def _extrapolate_to_now(vs: VehicleState, staleness: float,
                            lin_acc_slope: float, ang_acc_slope: float):
        """Here we just linearly extrapolate the acceleration to "now" from the previous state for
        each vehicle and then use standard kinematics to project the velocity and position from that."""
        # The following ~10 lines are a hack b/c I'm too stupid to figure out
        # how to do calculus on quaternions...
        heading = vs.pose.heading
        heading_delta_vec = staleness * (
            vs.angular_velocity + 0.5 * vs.angular_acceleration * staleness +
            ang_acc_slope * staleness**2 / 6.0)
        heading += vec_to_radians(heading_delta_vec[:2]) + (0.5 * math.pi)
        heading %= 2 * math.pi
        vs.pose.orientation = fast_quaternion_from_angle(heading)
        # XXX: also need to remove the cached heading_ since we've changed orientation
        vs.pose.heading_ = None

        # I assume the following should be updated based on changing
        # heading from above, but I'll leave that for now...
        vs.pose.position += staleness * (
            vs.linear_velocity + 0.5 * vs.linear_acceleration * staleness +
            lin_acc_slope * staleness**2 / 6.0)

        vs.linear_velocity += staleness * (vs.linear_acceleration +
                                           0.5 * lin_acc_slope * staleness)
        vs.speed = np.linalg.norm(vs.linear_velocity)
        vs.angular_velocity += staleness * (vs.angular_acceleration +
                                            0.5 * ang_acc_slope * staleness)
        vs.linear_acceleration += staleness * lin_acc_slope
        vs.angular_acceleration += staleness * ang_acc_slope
Exemplo n.º 3
0
    def _hijack_social_vehicle_with_social_agent(
        self, sim, vehicle_id: str, social_agent_actor: SocialAgentActor,
    ) -> str:
        """Upon hijacking the social agent is now in control of the vehicle. It will
        initialize the vehicle chassis (and by extension the controller) with a
        "greatest common denominator" state; that is: what's available via the vehicle
        front-end common to both source and destination policies during airlock.
        """
        self._log.debug(f"Hijack vehicle={vehicle_id} with actor={social_agent_actor}")
        agent_id = BubbleManager._make_social_agent_id(vehicle_id, social_agent_actor)

        is_boid = isinstance(social_agent_actor, BoidAgentActor)
        vehicle = sim.vehicle_index.switch_control_to_agent(
            sim, vehicle_id, agent_id, boid=is_boid, recreate=False
        )
        self._update_cursor(vehicle_id, vehicle=vehicle)

        for provider in sim.providers:
            if (
                sim.agent_manager.agent_interface_for_agent_id(agent_id).action_space
                in provider.action_spaces
            ):
                provider.create_vehicle(
                    VehicleState(
                        vehicle_id=vehicle_id,
                        vehicle_type="passenger",
                        pose=vehicle.pose,
                        dimensions=vehicle.chassis.dimensions,
                        speed=vehicle.speed,
                        source="HIJACK",
                    )
                )
def test_we_reach_target_pose_at_given_time(motion_planner_provider, loop_scenario):
    motion_planner_provider.setup(loop_scenario)

    # we sync with the empty provider state since we don't have any other active providers
    motion_planner_provider.sync(ProviderState())

    motion_planner_provider.create_vehicle(
        VehicleState(
            vehicle_id="EGO",
            vehicle_type="passenger",
            pose=Pose.from_center([0, 0, 0.5], heading=Heading(0)),
            dimensions=VEHICLE_CONFIGS["passenger"].dimensions,
            speed=0,
            source="TESTS",
        )
    )
    target_position = [32, -12]
    target_heading = math.pi * 0.5
    dt = 1.0
    elapsed_sim_time = 0
    for i in range(10):
        t = 10 - i
        provider_state = motion_planner_provider.step(
            dt=dt,
            target_poses_at_t={"EGO": np.array([*target_position, target_heading, t])},
            elapsed_sim_time=elapsed_sim_time,
        )
        elapsed_sim_time += dt

    assert len(provider_state.vehicles) == 1
    ego_vehicle = provider_state.vehicles[0]
    position, heading = ego_vehicle.pose.position, ego_vehicle.pose.heading

    assert np.linalg.norm(position[:2] - np.array(target_position)) < 1e-16
    assert np.isclose(heading, target_heading)
Exemplo n.º 5
0
def provider_vehicle(position, heading, speed):
    return VehicleState(
        vehicle_id="sv-132",
        vehicle_type="truck",
        pose=Pose.from_center(position, heading),
        dimensions=BoundingBox(length=3, width=1, height=2),
        speed=speed,
        source="TESTS",
    )
Exemplo n.º 6
0
 def override_next_provider_state(self, vehicles: Sequence):
     self._next_provider_state = ProviderState(vehicles=[
         VehicleState(
             vehicle_id=vehicle_id,
             vehicle_type="passenger",
             pose=pose,
             dimensions=VEHICLE_CONFIGS["passenger"].dimensions,
             speed=speed,
             source="MOCK",
         ) for vehicle_id, pose, speed in vehicles
     ], )
Exemplo n.º 7
0
 def _entity_to_vs(entity: EntityState) -> VehicleState:
     veh_id = entity.entity_id
     veh_type = ROSDriver._decode_entity_type(entity.entity_type)
     veh_dims = Dimensions(entity.length, entity.width, entity.height)
     vs = VehicleState(
         source="EXTERNAL",
         vehicle_id=veh_id,
         vehicle_config_type=veh_type,
         pose=Pose(
             ROSDriver._xyz_to_vect(entity.pose.position),
             ROSDriver._xyzw_to_vect(entity.pose.orientation),
         ),
         dimensions=veh_dims,
         linear_velocity=ROSDriver._xyz_to_vect(entity.velocity.linear),
         angular_velocity=ROSDriver._xyz_to_vect(entity.velocity.angular),
         linear_acceleration=ROSDriver._xyz_to_vect(
             entity.acceleration.linear),
         angular_acceleration=ROSDriver._xyz_to_vect(
             entity.acceleration.angular),
     )
     vs.set_privileged()
     vs.speed = np.linalg.norm(vs.linear_velocity)
     return vs
Exemplo n.º 8
0
    def _add_agent(self,
                   agent_id,
                   agent_interface,
                   agent_model,
                   sim,
                   boid=False,
                   trainable=True):
        # TODO: Disentangle what is entangled below into:
        # 1. AgentState initialization,
        # 2. Agent vehicle initialization, which should live elsewhere, and
        # 3. Provider related state initialization, which does not belong here.
        #
        # A couple of things forced the current unhappy state --
        #
        # 1. SMARTS internal coordinate system should be 100% unified. Coordinate
        #    transformation should happen only at the interface between SMARTS and
        #    its providers. For example, mission start pose should just be vehicle
        #    initial pose.
        # 2. AgentState should be allowed to fully initialized (setup) without vehicle
        #    information. We currently rely on the creation of the Vehicle instance to
        #    do the coordinate transformation. :-(
        # 3. Providers should not be creating vehicles. They do need to get notified
        #    about new vehicles entering their territory through the VehicleState
        #    message. But that does not need to happen at Agent instantiation.

        assert isinstance(agent_id, str)  # SUMO expects strings identifiers

        scenario = sim.scenario
        mission = scenario.mission(agent_id)
        planner = MissionPlanner(
            scenario.waypoints,
            scenario.road_network,
            agent_behavior=agent_interface.agent_behavior,
        )
        planner.plan(mission)

        vehicle = sim.vehicle_index.build_agent_vehicle(
            sim,
            agent_id,
            agent_interface,
            planner,
            scenario.vehicle_filepath,
            scenario.tire_parameters_filepath,
            trainable,
            scenario.surface_patches,
            scenario.controller_parameters_filepath,
            agent_model.initial_speed,
            boid=boid,
        )

        matching_providers = [
            provider for provider in sim.providers
            if agent_interface.action_space in provider.action_spaces
        ]
        if matching_providers:
            assert (
                len(matching_providers) == 1
            ), f"Found {matching_providers} for action space {agent_interface.action_space}"
            provider = matching_providers[0]
            provider.create_vehicle(
                VehicleState(
                    vehicle_id=vehicle.id,
                    vehicle_type=vehicle.vehicle_type,
                    pose=vehicle.pose,
                    dimensions=vehicle.chassis.dimensions,
                    source="NEW-AGENT",
                ))

        self._agent_interfaces[agent_id] = agent_interface
        self._social_agent_data_models[agent_id] = agent_model
Exemplo n.º 9
0
    def _compute_traffic_vehicles(self) -> List[VehicleState]:
        sub_results = self._traci_conn.simulation.getSubscriptionResults()

        if sub_results is None or sub_results == {}:
            return {}

        # New social vehicles that have entered the map
        newly_departed_sumo_traffic = [
            vehicle_id
            for vehicle_id in sub_results[tc.VAR_DEPARTED_VEHICLES_IDS]
            if vehicle_id not in self._non_sumo_vehicle_ids
        ]

        reserved_areas = [
            position for position in self._reserved_areas.values()
        ]

        # Subscribe to all vehicles to reduce repeated traci calls
        for vehicle_id in newly_departed_sumo_traffic:
            self._traci_conn.vehicle.subscribe(
                vehicle_id,
                [
                    tc.VAR_POSITION,  # Decimal=66,  Hex=0x42
                    tc.VAR_ANGLE,  # Decimal=67,  Hex=0x43
                    tc.VAR_SPEED,  # Decimal=64,  Hex=0x40
                    tc.VAR_VEHICLECLASS,  # Decimal=73,  Hex=0x49
                    tc.VAR_ROUTE_INDEX,  # Decimal=105, Hex=0x69
                    tc.VAR_EDGES,  # Decimal=84,  Hex=0x54
                    tc.VAR_TYPE,  # Decimal=79,  Hex=0x4F
                    tc.VAR_LENGTH,  # Decimal=68,  Hex=0x44
                    tc.VAR_WIDTH,  # Decimal=77,  Hex=0x4d
                ],
            )

        sumo_vehicle_state = self._traci_conn.vehicle.getAllSubscriptionResults(
        )

        for vehicle_id in newly_departed_sumo_traffic:
            other_vehicle_shape = self._shape_of_vehicle(
                sumo_vehicle_state, vehicle_id)

            violates_reserved_area = False
            for reserved_area in reserved_areas:
                if reserved_area.intersects(other_vehicle_shape):
                    violates_reserved_area = True
                    break

            if violates_reserved_area:
                self._traci_conn.vehicle.remove(vehicle_id)
                sumo_vehicle_state.pop(vehicle_id)
                continue

            self._log.debug("SUMO vehicle %s entered simulation", vehicle_id)

        # Non-sumo vehicles will show up the step after the sync where the non-sumo vehicle is
        # added.
        newly_departed_non_sumo_vehicles = [
            vehicle_id
            for vehicle_id in sub_results[tc.VAR_DEPARTED_VEHICLES_IDS]
            if vehicle_id not in newly_departed_sumo_traffic
        ]

        for vehicle_id in newly_departed_non_sumo_vehicles:
            if vehicle_id in self._reserved_areas:
                del self._reserved_areas[vehicle_id]

        self._sumo_vehicle_ids = (set(sumo_vehicle_state.keys()) -
                                  self._non_sumo_vehicle_ids)
        provider_vehicles = []

        # batched conversion of positions to numpy arrays
        front_bumper_positions = np.array([
            sumo_vehicle[tc.VAR_POSITION]
            for sumo_vehicle in sumo_vehicle_state.values()
        ]).reshape(-1, 2)

        for i, (sumo_id,
                sumo_vehicle) in enumerate(sumo_vehicle_state.items()):
            # XXX: We can safely rely on iteration order over dictionaries being
            #      stable on py3.7.
            #      See: https://www.python.org/downloads/release/python-370/
            #      "The insertion-order preservation nature of dict objects is now an
            #      official part of the Python language spec."
            front_bumper_pos = front_bumper_positions[i]
            heading = Heading.from_sumo(sumo_vehicle[tc.VAR_ANGLE])
            speed = sumo_vehicle[tc.VAR_SPEED]
            vehicle_config_type = sumo_vehicle[tc.VAR_VEHICLECLASS]
            dimensions = VEHICLE_CONFIGS[vehicle_config_type].dimensions
            provider_vehicles.append(
                VehicleState(
                    # XXX: In the case of the SUMO traffic provider, the vehicle ID is
                    #      the sumo ID is the actor ID.
                    vehicle_id=sumo_id,
                    vehicle_config_type=vehicle_config_type,
                    pose=Pose.from_front_bumper(front_bumper_pos, heading,
                                                dimensions.length),
                    dimensions=dimensions,
                    speed=speed,
                    source="SUMO",
                ))

        return provider_vehicles
Exemplo n.º 10
0
    def step(
        self,
        sim,
    ):
        captures_by_agent_id = defaultdict(list)

        # Do an optimization to only check if there are pending agents.
        if not sim.agent_manager.pending_agent_ids:
            return

        social_vehicle_ids = sim.vehicle_index.social_vehicle_ids
        vehicles = {
            v_id: sim.vehicle_index.vehicle_by_id(v_id)
            for v_id in social_vehicle_ids
        }

        existing_agent_vehicles = (
            sim.vehicle_index.vehicle_by_id(v_id)
            for v_id in sim.vehicle_index.agent_vehicle_ids)

        def largest_vehicle_plane_dimension(vehicle):
            return max(*vehicle.chassis.dimensions.as_lwh[:2])

        agent_vehicle_comp = [(v.position[:2],
                               largest_vehicle_plane_dimension(v), v)
                              for v in existing_agent_vehicles]

        for agent_id in sim.agent_manager.pending_agent_ids:
            trap = self._traps[agent_id]

            if trap is None:
                continue

            trap.step_trigger(sim.timestep_sec)

            if not trap.ready:
                continue

            # Order vehicle ids by distance.
            sorted_vehicle_ids = sorted(
                list(social_vehicle_ids),
                key=lambda v: squared_dist(vehicles[v].position[:2], trap.
                                           mission.start.position),
            )
            for v_id in sorted_vehicle_ids:
                vehicle = vehicles[v_id]
                point = Point(vehicle.position)

                if any(
                        v.startswith(prefix)
                        for prefix in trap.exclusion_prefixes):
                    continue

                if not point.within(trap.geometry):
                    continue

                captures_by_agent_id[agent_id].append((
                    v_id,
                    trap,
                    replace(
                        trap.mission,
                        start=Start(vehicle.position[:2],
                                    vehicle.pose.heading),
                    ),
                ))
                # TODO: Resolve overlap using a tree instead of just removing.
                social_vehicle_ids.remove(v_id)
                break

        # Use fed in trapped vehicles.
        agents_given_vehicle = set()
        used_traps = []
        for agent_id in sim._agent_manager.pending_agent_ids:
            if agent_id not in self._traps:
                continue

            trap = self._traps[agent_id]

            captures = captures_by_agent_id[agent_id]

            if not trap.ready:
                continue

            vehicle = None
            if len(captures) > 0:
                vehicle_id, trap, mission = rand.choice(captures)
                vehicle = TrapManager._hijack_vehicle(sim, vehicle_id,
                                                      agent_id, mission)
            elif trap.patience_expired:
                if len(agent_vehicle_comp) > 0:
                    agent_vehicle_comp.sort(key=lambda v: squared_dist(
                        v[0], trap.mission.start.position))

                    # Make sure there is not an agent vehicle in the same location
                    pos, largest_dimension, _ = agent_vehicle_comp[0]
                    if (squared_dist(pos, trap.mission.start.position) <
                            largest_dimension):
                        continue

                vehicle = TrapManager._make_vehicle(sim, agent_id,
                                                    trap.mission)
            else:
                continue

            if vehicle == None:
                continue

            agents_given_vehicle.add(agent_id)
            used_traps.append((agent_id, trap))

            for provider in sim.providers:
                if (sim.agent_manager.agent_interface_for_agent_id(
                        agent_id).action_space in provider.action_spaces):
                    provider.create_vehicle(
                        VehicleState(
                            vehicle_id=vehicle.id,
                            vehicle_type="passenger",
                            pose=vehicle.pose,
                            dimensions=vehicle.chassis.dimensions,
                            speed=vehicle.speed,
                            source="EGO-HIJACK",
                        ))
        if len(agents_given_vehicle) > 0:
            self.reset_traps(used_traps)
            sim.agent_manager.remove_pending_agent_ids(agents_given_vehicle)
def run(
    client,
    traffic_sim: SumoTrafficSimulation,
    plane_body_id,
    n_steps=1e6,
):
    prev_friction_sum = None
    scenario = next(
        Scenario.variations_for_all_scenario_roots(
            ["scenarios/loop"], agents_to_be_briefed=["007"]))
    previous_provider_state = traffic_sim.setup(scenario)
    traffic_sim.sync(previous_provider_state)
    previous_vehicle_ids = set()
    vehicles = dict()

    passenger_dimen = VEHICLE_CONFIGS["passenger"].dimensions

    for step in range(n_steps):
        if not client.isConnected():
            print("Client got disconnected")
            return

        injected_poses = [
            social_spin_on_bumper_cw(step * 0.1, [8, 6, 0],
                                     passenger_dimen.length),
            # social_spin_on_centre_ccw(step * 0.1, [8, 0, passenger_dimen[2] / 2]),
            # social_spin_on_axle_cw(
            #     step * 0.1, [0, 0, 0], [2 * passenger_dimen[0], 0, 0]
            # ),
            # Pose(
            #     [0, -6, passenger_dimen[2] * 0.5],
            #     fast_quaternion_from_angle(Heading(0)),
            # ),
        ]

        current_provider_state = traffic_sim.step(0.01)
        for pose, i in zip(injected_poses, range(len(injected_poses))):
            converted_to_provider = VehicleState(
                vehicle_id=f"EGO{i}",
                vehicle_type="passenger",
                pose=pose,
                dimensions=passenger_dimen,
                speed=0,
                source="TESTS",
            )
            current_provider_state.vehicles.append(converted_to_provider)
        traffic_sim.sync(current_provider_state)

        current_vehicle_ids = {
            v.vehicle_id
            for v in current_provider_state.vehicles
        }
        vehicle_ids_removed = previous_vehicle_ids - current_vehicle_ids
        vehicle_ids_added = current_vehicle_ids - previous_vehicle_ids

        for v_id in vehicle_ids_added:
            pose = Pose.from_center([0, 0, 0], Heading(0))
            vehicles[v] = Vehicle(
                id=v_id,
                pose=pose,
                chassis=BoxChassis(
                    pose=pose,
                    speed=0,
                    dimensions=vehicle_config.dimensions,
                    bullet_client=client,
                ),
            )

        # Hide any additional vehicles
        for v in vehicle_ids_removed:
            veh = vehicles.pop(v, None)
            veh.teardown()

        for pv in current_provider_state.vehicles:
            vehicles[pv.vehicle_id].control(pv.pose, pv.speed)

        client.stepSimulation()

        look_at(client, tuple([0, 0, 0]), top_down=False)

        previous_vehicle_ids = current_vehicle_ids

    traffic_sim.teardown()