Exemplo n.º 1
0
                    type=int,
                    default=None,
                    help="The device to use, e.g. CUDA device.")
parser.add_argument(
    "-m",
    "--method",
    type=str,
    default="L-BFGS-B",
    help=
    "The optimization algorithm to use. Valid values are COBYLA and L-BFGS-B.")
args = parser.parse_args()

if args.device is not None:
    smat.set_backend_options(device=args.device)

print "Using device", smat.get_backend_info().device
print "Using method", args.method, "with float64"

# Load some sample bio data. Specifically this is a subset of the
# RNAcompete protein binding affinities from Ray et al., Nature, 2013.
y = numpy.load('data/rnac/rnac_subset.npz')['y']
n, m = y.shape


def objective_function(x, y, lib):
    # The test objective function below happens to be that corresponding to
    # "Variance Stabilization" (Huber et al., Bioinformatics, 2002).
    # The specific objective is not important.
    # The point is that the parameters can be sent to the GPU,
    # evaluated, pulled back, and STILL be much faster than CPU.
Exemplo n.º 2
0
import numpy
import numpy.random
import smat
import smat.util
import argparse
import scipy.optimize

parser = argparse.ArgumentParser(description="Train a 784-1000-1000-10 neural net on MNIST and print out the error rates.")
parser.add_argument("-d","--device",type=int,default=None,help="The device to use, e.g. CUDA device.")
parser.add_argument("-m","--method",type=str,default="L-BFGS-B",help="The optimization algorithm to use. Valid values are COBYLA and L-BFGS-B.")
args = parser.parse_args()

if args.device is not None:
    smat.set_backend_options(device=args.device)

print "Using device",smat.get_backend_info().device
print "Using method",args.method,"with float64"

# Load some sample bio data. Specifically this is a subset of the 
# RNAcompete protein binding affinities from Ray et al., Nature, 2013.
y = numpy.load('data/rnac/rnac_subset.npz')['y']
n,m = y.shape

def objective_function(x,y,lib):
    # The test objective function below happens to be that corresponding to
    # "Variance Stabilization" (Huber et al., Bioinformatics, 2002).
    # The specific objective is not important.
    # The point is that the parameters can be sent to the GPU, 
    # evaluated, pulled back, and STILL be much faster than CPU.
    
    # Shorthand for some functions that we're getting from lib=smat/numpy
Exemplo n.º 3
0
                    continue
                A = smat.ones((n,k),dtype=dt)
                B = smat.ones((k,m),dtype=dt)
                smat.dot(A,B)
                #smat.dot_nt(A,B.T)
                #smat.dot_tn(A.T,B)
                #smat.dot_tt(A.T,B.T)
                print n,m,k

quit()
'''
parser = argparse.ArgumentParser(description="Run the smat unit tests and/or performance tests.")
parser.add_argument("-p","--perf",action="store_true",default=False,help="Run performance tests instead of unit tests.")
parser.add_argument("-d","--device",type=int,default=None,help="The device to use, e.g. CUDA device.")
parser.add_argument("-b","--backend",type=str,default=None,help="The backend to use. Currently only \"cuda\" is supported.")
args = parser.parse_args()

if args.backend is not None:
    smat.set_backend(args.backend)

if args.device is not None:
    smat.set_backend_options(device=args.device)

print smat.get_backend_info()
print smat.get_heap_status()

if args.perf:
    smat.tests.perftest()
else:
    smat.tests.unittest()
Exemplo n.º 4
0
#     supplementary software release for DeepBind. Users of DeepBind
#     are encouraged to instead use the latest source code and binaries 
#     for scoring sequences at
#        http://tools.genes.toronto.edu/deepbind/
# 
import argparse
import smat
import smat.tests

smat.set_backend_options(device=0)

parser = argparse.ArgumentParser(description="Run the smat unit tests and/or performance tests.")
parser.add_argument("-p","--perf",action="store_true",default=False,help="Run performance tests instead of unit tests.")
parser.add_argument("-d","--device",type=int,default=None,help="The device to use, e.g. CUDA device.")
parser.add_argument("-b","--backend",type=str,default=None,help="The backend to use. Currently only \"cuda\" is supported.")
args = parser.parse_args()

if args.backend is not None:
    smat.set_backend(args.backend)

if args.device is not None:
    smat.set_backend_options(device=args.device)

print smat.get_backend_info()
print smat.get_heap_status()

if args.perf:
    smat.tests.perftest()
else:
    smat.tests.unittest()