Exemplo n.º 1
0
def test_mode_writing():
    run_id = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f")
    worker = socket.gethostname()
    for s in range(0, 10):
        fw = FileWriter(trial_dir="/tmp/ts_outputs/" + run_id,
                        step=s,
                        worker=worker)
        if s % 2 == 0:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr",
                mode=ModeKeys.TRAIN,
                mode_step=s // 2,
            )
        else:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr",
                mode=ModeKeys.EVAL,
                mode_step=s // 2,
            )
        fw.close()
    write_dummy_collection_file("/tmp/ts_outputs/" + run_id)
    files = glob.glob("/tmp/ts_outputs/" + run_id + "/**/*.tfevents",
                      recursive=True)

    global_steps = []
    train_steps = []
    eval_steps = []
    for f in files:
        fr = FileReader(fname=f)
        for tu in fr.read_tensors():
            tensor_name, step, tensor_data, mode, mode_step = tu
            if step % 2 == 0:
                assert mode == ModeKeys.TRAIN
                train_steps.append(step // 2)
            else:
                assert mode == ModeKeys.EVAL
                eval_steps.append(step // 2)
            assert mode_step == step // 2
            global_steps.append(step)

    trial = create_trial("/tmp/ts_outputs/" + run_id)
    assert trial.steps() == sorted(global_steps)
    assert trial.steps(ModeKeys.TRAIN) == sorted(train_steps)
    assert trial.steps(ModeKeys.EVAL) == sorted(eval_steps)
    shutil.rmtree("/tmp/ts_outputs/" + run_id)
Exemplo n.º 2
0
def test_index():
    numpy_tensor = [
        np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
        np.array([[1.0, 2.0, 4.0], [3.0, 4.0, 5.0]], dtype=np.float32),
    ]
    runid = "default"
    logdir = "."
    step = 0
    worker = "worker_0"
    run_dir = os.path.join(logdir, runid)
    writer = FileWriter(trial_dir=run_dir,
                        step=step,
                        worker=worker,
                        verbose=True)
    for i in (0, len(numpy_tensor) - 1):
        n = "tensor" + str(i)
        writer.write_tensor(tdata=numpy_tensor[i], tname=n)
    writer.flush()
    writer.close()
    efl = TensorFileLocation(step_num=step, worker_name=worker)
    eventfile = efl.get_file_location(trial_dir=run_dir)
    indexfile = IndexFileLocationUtils.get_index_key_for_step(
        run_dir, step, worker)

    fo = open(eventfile, "rb")
    with open(indexfile) as idx_file:
        index_data = json.load(idx_file)
        tensor_payload = index_data["tensor_payload"]
        i = 0
        for tensor in tensor_payload:
            start_idx = int(tensor["start_idx"])
            fo.seek(start_idx, 0)
            length = int(tensor["length"])
            line = fo.read(length)
            zoo = open("test.txt", "wb")
            zoo.write(line)
            zoo.close()
            testfile_reader = FileReader("./test.txt")
            tensor_values = list(testfile_reader.read_tensors())
            assert np.allclose(
                tensor_values[0][2].all(),
                numpy_tensor[i].all()), "indexwriter not working"
            i = i + 1

    fo.close()
    shutil.rmtree(run_dir)
    os.remove("test.txt")
Exemplo n.º 3
0
def test_mode_data():
    run_id = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f")
    trial_dir = "/tmp/ts_outputs/" + run_id

    c = CollectionManager()
    c.add("default")
    c.get("default").tensor_names = ["arr_1"]
    c.get("default").tensor_names = ["arr_2"]
    c.export(trial_dir, DEFAULT_COLLECTIONS_FILE_NAME)
    trial = create_trial(trial_dir)
    worker = socket.gethostname()
    for s in range(0, 10):
        fw = FileWriter(trial_dir=trial_dir, step=s, worker=worker)
        if s % 2 == 0:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr_1",
                mode=modes.TRAIN,
                mode_step=s // 2,
            )
        else:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr_2",
                mode=modes.EVAL,
                mode_step=s // 2,
            )
        fw.close()

    assert trial.tensor_names() == ["arr_1", "arr_2"]
    assert trial.tensor_names(step=0) == ["arr_1"]
    assert trial.tensor_names(step=1) == ["arr_2"]
    assert trial.tensor_names(step=0, mode=modes.TRAIN) == ["arr_1"]
    assert trial.tensor_names(step=0, mode=modes.EVAL) == ["arr_2"]

    assert trial.tensor_names(mode=modes.TRAIN) == ["arr_1"]
    assert trial.tensor_names(mode=modes.EVAL) == ["arr_2"]
Exemplo n.º 4
0
def test_mode_data():
    run_id = "trial_" + datetime.now().strftime("%Y%m%d-%H%M%S%f")
    trial_dir = "/tmp/ts_outputs/" + run_id

    c = CollectionManager()
    c.add("default")
    c.get("default").tensor_names = ["arr"]
    c.export(trial_dir, DEFAULT_COLLECTIONS_FILE_NAME)
    tr = create_trial(trial_dir)
    worker = socket.gethostname()
    for s in range(0, 10):
        fw = FileWriter(trial_dir=trial_dir, step=s, worker=worker)
        if s % 2 == 0:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr",
                mode=modes.TRAIN,
                mode_step=s // 2,
            )
        else:
            fw.write_tensor(
                tdata=np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32),
                tname="arr",
                mode=modes.EVAL,
                mode_step=s // 2,
            )
        fw.close()

        if s % 2 == 0:
            assert tr.has_passed_step(s // 2,
                                      mode=modes.TRAIN) == StepState.AVAILABLE
            assert tr.has_passed_step(
                s // 2, mode=modes.EVAL) == StepState.NOT_YET_AVAILABLE
        else:
            assert tr.has_passed_step(s // 2,
                                      mode=modes.EVAL) == StepState.AVAILABLE

        assert tr.has_passed_step(s) == StepState.AVAILABLE
        assert tr.has_passed_step(s + 1) == StepState.NOT_YET_AVAILABLE
        assert tr.has_passed_step(
            s + 1, mode=modes.TRAIN) == StepState.NOT_YET_AVAILABLE

    assert len(tr.tensor_names()) == 1
    assert len(tr.steps()) == 10
    assert len(tr.steps(mode=modes.TRAIN)) == 5
    assert len(tr.steps(mode=modes.EVAL)) == 5
    assert len(tr.modes()) == 2

    for i in range(10):
        if i % 2 == 0:
            assert tr.mode(i) == modes.TRAIN
        else:
            assert tr.mode(i) == modes.EVAL
        assert tr.mode_step(i) == i // 2

    for i in range(5):
        assert tr.global_step(modes.TRAIN, i) == (i * 2)
        assert tr.global_step(modes.EVAL, i) == (i * 2) + 1

    assert len(tr.tensor("arr").steps()) == 10
    assert len(tr.tensor("arr").steps(mode=modes.TRAIN)) == 5
    assert len(tr.tensor("arr").steps(mode=modes.EVAL)) == 5

    for i in range(10):
        assert tr.tensor("arr").value(i) is not None
        if i < 5:
            assert tr.tensor("arr").value(i, mode=modes.TRAIN) is not None
            assert tr.tensor("arr").value(i, mode=modes.EVAL) is not None

    shutil.rmtree("/tmp/ts_outputs/" + run_id)