Exemplo n.º 1
0
def helper_test_keras_v2_gradienttape(script_mode: bool = False,
                                      json_file_contents="{}",
                                      default=False):
    """ Test the default ZCC behavior of saving losses and metrics in eager and non-eager modes."""
    smd.del_hook()
    tf.keras.backend.clear_session()

    with SagemakerSimulator(json_file_contents=json_file_contents) as sim:
        helper_keras_gradienttape_train(script_mode=script_mode,
                                        json_file_contents=json_file_contents,
                                        sim=sim)
        hook = smd.get_hook()

        if script_mode:
            assert hook
            if default:
                assert hook.has_default_hook_configuration()
            hook.close()
            # Check that hook created and tensors saved
            trial = smd.create_trial(path=sim.out_dir)
            assert len(trial.steps()) > 0, "Nothing saved at any step."
            assert len(trial.tensor_names()) > 0, "Tensors were not saved."
            assert len(trial.tensor_names(collection="losses")) > 0
        else:
            if version.parse(tf.__version__) < version.parse("2.1.2"):
                assert not hook  # only supported on TF 2.1.2 and greater
                return
            assert hook
            hook.close()
            # Check that hook created and tensors saved
            trial = smd.create_trial(path=sim.out_dir)
            assert len(trial.steps()) > 0, "Nothing saved at any step."
            assert len(trial.tensor_names()) > 0, "Tensors were not saved."
            assert len(trial.tensor_names(collection="losses")) > 0
            if is_tf_2_2() and default is False:
                # Inputs and Outputs are not saved with the default collection configurations.
                assert len(trial.tensor_names(collection="inputs")) > 0
                assert len(trial.tensor_names(collection="outputs")) > 0
                assert trial.tensor_names(collection="outputs") == [
                    "predictions"
                ]
                if "dense_layers" in json_file_contents:
                    # Only assert for test_keras_v2_multi_collections
                    # which defines this custom collection
                    assert len(
                        trial.tensor_names(collection="dense_layers")) > 0
                else:
                    assert len(
                        trial.tensor_names(collection="dense_layers")) == 0
Exemplo n.º 2
0
def test_keras_fit(out_dir, tf_eager_mode, saveall):
    hook = smd.KerasHook(out_dir=out_dir, save_all=saveall)
    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        eager=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x eager mode
    if saveall:  # save losses, metrics, weights, biases
        if tf_eager_mode:
            assert len(trial.tensor_names()) == (12 if is_tf_2_2() else 13)
        else:
            assert len(trial.tensor_names()) == 21
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
        assert len(
            trial.tensor_names(
                collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
        assert (
            len(
                trial.tensor_names(
                    collection=CollectionKeys.OPTIMIZER_VARIABLES,
                    mode=ModeKeys.EVAL)) == 0,
            "No Optimizer Variables Should be Saved in EVAL Mode",
        )
    else:  # save the default losses and metrics
        assert len(trial.tensor_names()) == (3 if is_tf_2_2() and tf_eager_mode
                                             else 4)
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == (
        2 if is_tf_2_2() and tf_eager_mode else 3)
def test_subclassed_model(out_dir):
    # Download and load MNIST dataset.
    (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data("MNIST-data")
    x_train, x_test = x_train / 255.0, x_test / 255.0

    # Add a channels dimension
    x_train = x_train[..., tf.newaxis]
    x_test = x_test[..., tf.newaxis]

    # Create an instance of the model
    model = MyModel()

    train_ds = (
        tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000, seed=123).batch(2)
    )

    MyModel.hook = smd.KerasHook(
        out_dir,
        save_all=True,
        save_config=smd.SaveConfig(save_steps=[x for x in range(10)], save_interval=1),
    )

    MyModel.hook.register_model(model)
    model.compile(optimizer="Adam", loss="mse", run_eagerly=True)
    model.fit(train_ds, epochs=1, steps_per_epoch=10, callbacks=[MyModel.hook])

    trial = smd.create_trial(out_dir)
    assert len(trial.tensor_names(collection=smd.CollectionKeys.LAYERS)) == 8

    assert trial.tensor_names(collection=smd.CollectionKeys.INPUTS) == ["model_input"]
    assert trial.tensor_names(collection=smd.CollectionKeys.OUTPUTS) == ["labels", "predictions"]
    assert trial.tensor_names(collection=smd.CollectionKeys.LOSSES) == ["loss"]
    assert len(trial.tensor_names(collection=smd.CollectionKeys.GRADIENTS)) == 6
Exemplo n.º 4
0
def test_estimator(out_dir, tf_eager_mode, saveall):
    """ Works as intended. """
    if tf_eager_mode is False:
        tf.compat.v1.disable_eager_execution()
        tf.compat.v1.reset_default_graph()
    tf.keras.backend.clear_session()
    mnist_classifier = get_estimator()
    train_input_fn, eval_input_fn = get_input_fns()

    # Train and evaluate
    train_steps, eval_steps = 8, 2
    hook = smd.EstimatorHook(out_dir=out_dir, save_all=saveall)
    hook.set_mode(mode=smd.modes.TRAIN)
    mnist_classifier.train(input_fn=train_input_fn, steps=train_steps, hooks=[hook])
    hook.set_mode(mode=smd.modes.EVAL)
    mnist_classifier.evaluate(input_fn=eval_input_fn, steps=eval_steps, hooks=[hook])

    # Check that hook created and tensors saved
    trial = smd.create_trial(path=out_dir)
    tnames = trial.tensor_names()
    assert len(trial.steps()) > 0
    if saveall:
        # Number of tensors in each collection
        # vanilla TF 2.2: all = 300, loss = 1, weights = 4, gradients = 0, biases = 18, optimizer variables = 0, metrics = 0, others = 277
        # AWS-TF 2.2 : all = 300, loss = 1, weights = 4, gradients = 8, biases = 18, optimizer variables = 0, metrics = 0, others = 269
        # AWS-TF 2.1 : all = 309, loss = 1, weights = 4, gradients = 8, biases = 18, optimizer variables = 0, metrics = 0, others = 278
        assert len(tnames) >= 300
        assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 4
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 18
        assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) >= 0
        assert len(trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) >= 0
    else:
        assert len(tnames) == 1
        assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
Exemplo n.º 5
0
def test_linear_classifier(out_dir, tf_eager_mode, saveall):
    """ Works as intended. """
    if tf_eager_mode is False:
        tf.compat.v1.disable_eager_execution()
        tf.compat.v1.reset_default_graph()
    tf.keras.backend.clear_session()
    train_input_fn, eval_input_fn = get_input_fns()
    x_feature = tf.feature_column.numeric_column("x", shape=(28, 28))
    estimator = tf.estimator.LinearClassifier(
        feature_columns=[x_feature], model_dir="/tmp/mnist_linear_classifier", n_classes=10
    )
    hook = smd.EstimatorHook(out_dir=out_dir, save_all=saveall)
    estimator.train(input_fn=train_input_fn, steps=10, hooks=[hook])

    # Check that hook created and tensors saved
    trial = smd.create_trial(path=out_dir)
    tnames = trial.tensor_names()
    assert len(trial.steps()) > 0
    if saveall:
        # Number of tensors in each collection
        # vanilla TF 2.2: all = 214, loss = 2, weights = 1, gradients = 0, biases = 12, optimizer variables = 0, metrics = 0, others = 199
        # AWS-TF 2.2: all = 219, loss = 2, weights = 1, gradients = 2, biases = 12, optimizer variables = 5, metrics = 0, others = 197
        # AWS-TF 2.1: all = 226, loss = 2, weights = 1, gradients = 2, biases = 12, optimizer variables = 5, metrics = 0, others = 204
        assert len(tnames) >= 214
        assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 1
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 12
        assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) >= 0
        assert len(trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) >= 0
    else:
        assert len(tnames) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 2
Exemplo n.º 6
0
def test_save_layer_inputs_and_outputs(out_dir, tf_eager_mode):
    # explicitly save INPUTS and OUTPUTS
    include_collections = [CollectionKeys.INPUTS, CollectionKeys.OUTPUTS]
    hook = smd.KerasHook(out_dir=out_dir,
                         include_collections=include_collections)

    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        eager=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )
    trial = smd.create_trial(path=out_dir)
    assert len(trial.tensor_names(collection=CollectionKeys.INPUTS)) == 4
    assert len(trial.tensor_names(collection=CollectionKeys.OUTPUTS)) == 4

    # Check that output of layer is equal to the input of the next
    boolean_matrix = trial.tensor("flatten/outputs").value(0) == trial.tensor(
        "dense/inputs").value(0)
    assert boolean_matrix.all()
    boolean_matrix = trial.tensor("dense/outputs").value(0) == trial.tensor(
        "dropout/inputs").value(0)
    assert boolean_matrix.all()
    boolean_matrix = trial.tensor("dropout/outputs").value(0) == trial.tensor(
        "dense_1/inputs").value(0)
    assert boolean_matrix.all()
Exemplo n.º 7
0
def test_gradtape_include_collections(out_dir):
    """
    This test ensures that a training script written with GradientTape
    handles the case where hook config contains all collections mentioned
    through include collections
    """
    include_collections = [
        CollectionKeys.WEIGHTS,
        CollectionKeys.BIASES,
        CollectionKeys.GRADIENTS,
        CollectionKeys.LOSSES,
        CollectionKeys.OUTPUTS,
        CollectionKeys.METRICS,
        CollectionKeys.OPTIMIZER_VARIABLES,
    ]
    save_config = SaveConfig(save_interval=3)
    hook = smd.KerasHook(
        out_dir,
        save_config=save_config,
        include_collections=include_collections,
        reduction_config=ReductionConfig(norms=ALLOWED_NORMS,
                                         reductions=ALLOWED_REDUCTIONS),
    )
    helper_keras_gradtape(out_dir, hook=hook)

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x
    assert len(trial.tensor_names()) == (16 if is_tf_2_2() else 15)
    assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) == 4
    assert len(
        trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 1
def test_linear_classifier(script_mode: bool):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    with SagemakerSimulator() as sim:
        # Setup
        train_input_fn, eval_input_fn = get_input_fns()
        x_feature = tf.feature_column.numeric_column("x", shape=(28, 28))
        estimator = tf.compat.v1.estimator.LinearClassifier(
            feature_columns=[x_feature],
            model_dir="/tmp/mnist_linear_classifier",
            n_classes=10)

        # Train
        if script_mode:
            hook = smd.EstimatorHook(out_dir=sim.out_dir)
            estimator.train(input_fn=train_input_fn, steps=100, hooks=[hook])
        else:
            estimator.train(input_fn=train_input_fn, steps=100)

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
def test_monitored_session(script_mode: bool):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    with SagemakerSimulator() as sim:
        train_op, X, Y = get_train_op_and_placeholders()
        init = tf.compat.v1.global_variables_initializer()
        mnist = get_data()

        if script_mode:
            hook = smd.SessionHook(out_dir=sim.out_dir)
            sess = tf.train.MonitoredSession(hooks=[hook])
        else:
            sess = tf.train.MonitoredSession()

        with sess:
            sess.run(init)
            for step in range(1, 101):
                batch_x, batch_y = mnist.train.next_batch(32)
                sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
Exemplo n.º 10
0
def test_monitored_session(script_mode):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    json_file_contents = """
            {
                "S3OutputPath": "s3://sagemaker-test",
                "LocalPath": "/opt/ml/output/tensors",
                "HookParameters" : {
                    "save_interval": "100"
                }
            }
            """
    with SagemakerSimulator(json_file_contents=json_file_contents) as sim:
        train_op, X, Y = get_train_op_and_placeholders()
        init = tf.global_variables_initializer()
        mnist = get_data()

        if script_mode:
            hook = smd.SessionHook(out_dir=sim.out_dir)
            sess = tf.train.MonitoredSession(hooks=[hook])
        else:
            sess = tf.train.MonitoredSession()

        with sess:
            sess.run(init)
            for step in range(1, 101):
                batch_x, batch_y = mnist.train.next_batch(32)
                sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
Exemplo n.º 11
0
def test_keras_v1(script_mode):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    tf.keras.backend.clear_session()
    with SagemakerSimulator() as sim:
        model = get_keras_model_v1()
        (x_train, y_train), (x_test, y_test) = get_keras_data()

        model.compile(
            loss="sparse_categorical_crossentropy",
            optimizer=tf.keras.optimizers.RMSprop(),
            metrics=["accuracy"],
        )
        if script_mode:
            hook = smd.KerasHook(out_dir=sim.out_dir)
            history = model.fit(
                x_train, y_train, batch_size=64, epochs=5, validation_split=0.2, callbacks=[hook]
            )
            test_scores = model.evaluate(x_test, y_test, verbose=2, callbacks=[hook])
        else:
            history = model.fit(x_train, y_train, batch_size=64, epochs=5, validation_split=0.2)
            test_scores = model.evaluate(x_test, y_test, verbose=2)

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
Exemplo n.º 12
0
def test_keras_gradients(script_mode, tf_optimizer):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    tf.keras.backend.clear_session()
    json_file_contents = """
            {
                "S3OutputPath": "s3://sagemaker-test",
                "LocalPath": "/opt/ml/output/tensors",
                "CollectionConfigurations": [
                    {
                        "CollectionName": "gradients"
                    },
                    {
                        "CollectionName": "optimizer_variables"
                    },
                    {
                        "CollectionName": "losses"
                    }
                ]
            }
            """
    with SagemakerSimulator(json_file_contents=json_file_contents) as sim:
        model = get_keras_model_v1()
        (x_train, y_train), (x_test, y_test) = get_keras_data()

        if tf_optimizer:
            opt = tf.train.RMSPropOptimizer(0.1)
        else:
            opt = tf.keras.optimizers.RMSprop()

        if script_mode:
            hook = smd.KerasHook(
                out_dir=sim.out_dir,
                include_collections=["gradients", "optimizer_variables", "losses"],
            )
            opt = hook.wrap_optimizer(opt)
            model.compile(
                loss="sparse_categorical_crossentropy", optimizer=opt, metrics=["accuracy"]
            )
            history = model.fit(
                x_train, y_train, batch_size=16, epochs=5, validation_split=0.2, callbacks=[hook]
            )
            test_scores = model.evaluate(x_test, y_test, verbose=2, callbacks=[hook])
        else:
            model.compile(
                loss="sparse_categorical_crossentropy", optimizer=opt, metrics=["accuracy"]
            )
            history = model.fit(x_train, y_train, batch_size=16, epochs=5, validation_split=0.2)
            test_scores = model.evaluate(x_test, y_test, verbose=2)

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
        assert len(trial.tensor_names(collection="gradients")) > 0
        if not tf_optimizer:
            # as this is only supported for keras optimizers currently
            assert len(trial.tensor_names(collection="optimizer_variables")) > 0
Exemplo n.º 13
0
def test_keras_fit_pure_eager(out_dir, tf_eager_mode):
    """
    Test save all and save default collection in fit() pure eager mode
    """
    hook = smd.KerasHook(out_dir=out_dir,
                         save_all=True,
                         save_config=SaveConfig(save_interval=3))
    helper_keras_fit(trial_dir=out_dir,
                     hook=hook,
                     eager=tf_eager_mode,
                     run_eagerly=True)

    trial = smd.create_trial(path=out_dir)
    if is_tf_2_2():
        assert len(trial.tensor_names()) == 27
    else:
        assert len(trial.tensor_names()) == (20 if is_tf_2_3() else 21)
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(
        trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
    assert len(trial.tensor_names(
        collection=CollectionKeys.INPUTS)) == (1 if is_tf_2_2() else 0)
    assert len(trial.tensor_names(
        collection=CollectionKeys.OUTPUTS)) == (2 if is_tf_2_2() else 0)
Exemplo n.º 14
0
def test_keras_fit(out_dir, tf_eager_mode, saveall):
    hook = smd.KerasHook(out_dir=out_dir, save_all=saveall)
    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        eager=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x eager mode
    if saveall:  # save losses, metrics, weights, biases
        if tf_eager_mode:
            assert len(trial.tensor_names()) == 7 if is_tf_2_2() else 8
        else:
            assert len(trial.tensor_names()) == 21
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    else:  # save the default losses and metrics
        assert len(trial.tensor_names()) == 3 if is_tf_2_2() and tf_eager_mode else 4
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert (
        len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 2
        if is_tf_2_2() and tf_eager_mode
        else 3
    )
def test_estimator(script_mode: bool):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    with SagemakerSimulator() as sim:
        # Setup
        mnist_classifier = get_estimator()
        train_input_fn, eval_input_fn = get_input_fns()

        # Train and evaluate
        train_steps, eval_steps = 80, 20
        if script_mode:
            hook = smd.EstimatorHook(out_dir=sim.out_dir)
            hook.set_mode(mode=smd.modes.TRAIN)
            mnist_classifier.train(input_fn=train_input_fn,
                                   steps=train_steps,
                                   hooks=[hook])
            hook.set_mode(mode=smd.modes.EVAL)
            mnist_classifier.evaluate(input_fn=eval_input_fn,
                                      steps=eval_steps,
                                      hooks=[hook])
        else:
            mnist_classifier.train(input_fn=train_input_fn, steps=train_steps)
            mnist_classifier.evaluate(input_fn=eval_input_fn, steps=eval_steps)

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        print(trial)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
        assert trial.steps() == [0, train_steps], "Wrong step count for trial."
Exemplo n.º 16
0
def test_model_inputs_and_outputs(out_dir, tf_eager_mode):
    # explicitly save INPUTS and OUTPUTS
    include_collections = [CollectionKeys.INPUTS, CollectionKeys.OUTPUTS]
    hook = smd.KerasHook(out_dir=out_dir,
                         include_collections=include_collections)

    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        eager=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )
    trial = smd.create_trial(path=out_dir)
    assert len(trial.steps(mode=ModeKeys.TRAIN)) == 3
    assert len(trial.tensor_names(collection=CollectionKeys.OUTPUTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.INPUTS)) == 1

    for tname in trial.tensor_names(collection=CollectionKeys.OUTPUTS):
        output = trial.tensor(tname)
        assert tname in ["y", "y_pred"]
        assert output.value(0) is not None
    # Check the shape of output tensors
    assert trial.tensor("y").value(0).shape[1] == 1  # label
    assert trial.tensor("y_pred").value(
        0).shape[1] == 10  # Output probability for each class
Exemplo n.º 17
0
def test_include_collections(out_dir, tf_eager_mode):
    include_collections = [
        CollectionKeys.WEIGHTS,
        CollectionKeys.BIASES,
        CollectionKeys.GRADIENTS,
        CollectionKeys.LOSSES,
        CollectionKeys.OUTPUTS,
        CollectionKeys.METRICS,
        CollectionKeys.OPTIMIZER_VARIABLES,
    ]
    save_config = SaveConfig(save_interval=3)
    hook = smd.KerasHook(
        out_dir,
        save_config=save_config,
        include_collections=include_collections,
        reduction_config=ReductionConfig(norms=ALLOWED_NORMS, reductions=ALLOWED_REDUCTIONS),
    )
    helper_keras_fit(out_dir, hook=hook, steps=["train", "eval", "predict"], eager=tf_eager_mode)

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x
    if tf_eager_mode:
        assert len(trial.tensor_names()) == 7 if is_tf_2_2() else 8
    else:
        assert len(trial.tensor_names()) == 18
        assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) == 4
        assert len(trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert (
        len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 2
        if is_tf_2_2() and tf_eager_mode
        else 3
    )
Exemplo n.º 18
0
def test_gradtape_tf_function(out_dir):
    def get_grads(images, labels):
        # with tf.GradientTape() as tape:
        return model(images, training=True)

    @tf.function
    def train_step(images, labels):
        return tf.reduce_mean(get_grads(images, labels))

    mnist = tf.keras.datasets.mnist
    (x_train, y_train), _ = mnist.load_data()
    dataset = tf.data.Dataset.from_tensor_slices(
        (tf.cast(x_train[..., tf.newaxis] / 255,
                 tf.float32), tf.cast(y_train, tf.int64)))
    dataset = dataset.shuffle(1000).batch(64)
    model = create_model()
    hook = create_hook(out_dir)
    opt = tf.keras.optimizers.Adam()
    hook.wrap_optimizer(opt)

    n_epochs = 1
    for epoch in range(n_epochs):
        for data, labels in dataset:
            dataset_labels = labels
            labels = tf.one_hot(labels, depth=10)
            with hook.wrap_tape(tf.GradientTape()) as tape:
                logits = train_step(data, labels)
            grads = tape.gradient(logits, model.variables)
            opt.apply_gradients(zip(grads, model.variables))
            hook.save_tensor("inputs", data, CollectionKeys.INPUTS)
            hook.save_tensor("logits", logits, CollectionKeys.OUTPUTS)
            hook.save_tensor("labels", labels, CollectionKeys.OUTPUTS)

    model.save(out_dir, save_format="tf")
    hook.close()

    trial = smd.create_trial(out_dir)
    assert trial.tensor_names(collection=CollectionKeys.LOSSES) == ["loss"]
    assert trial.tensor_names(collection=CollectionKeys.WEIGHTS) == [
        "weights/dense/kernel:0",
        "weights/dense_1/kernel:0",
    ]
    assert trial.tensor_names(collection=CollectionKeys.BIASES) == [
        "weights/dense/bias:0",
        "weights/dense_1/bias:0",
    ]
    assert trial.tensor_names(
        collection=CollectionKeys.OPTIMIZER_VARIABLES) == [
            "Adam/beta_1:0",
            "Adam/beta_2:0",
            "Adam/decay:0",
            "Adam/iter:0",
            "Adam/learning_rate:0",
        ]
    assert trial.tensor_names(collection=CollectionKeys.INPUTS) == ["inputs"]
    assert trial.tensor_names(collection=CollectionKeys.OUTPUTS) == [
        "labels", "logits"
    ]
Exemplo n.º 19
0
def helper_test_keras_v2(script_mode: bool = False, eager_mode: bool = True):
    """ Test the default ZCC behavior of saving losses and metrics in eager and non-eager modes."""
    smd.del_hook()
    tf.keras.backend.clear_session()
    if not eager_mode:
        tf.compat.v1.disable_eager_execution()
    with SagemakerSimulator() as sim:
        model = get_keras_model_v2()
        (x_train, y_train), (x_test, y_test) = get_keras_data()
        x_train, x_test = x_train / 255, x_test / 255

        opt = tf.keras.optimizers.RMSprop()
        if script_mode:
            hook = smd.KerasHook(out_dir=sim.out_dir, export_tensorboard=True)
            opt = hook.wrap_optimizer(opt)
            model.compile(loss="sparse_categorical_crossentropy",
                          optimizer=opt,
                          metrics=["accuracy"])
            history = model.fit(x_train,
                                y_train,
                                batch_size=64,
                                epochs=2,
                                validation_split=0.2,
                                callbacks=[hook])
            test_scores = model.evaluate(x_test,
                                         y_test,
                                         verbose=2,
                                         callbacks=[hook])
        else:
            model.compile(loss="sparse_categorical_crossentropy",
                          optimizer=opt,
                          metrics=["accuracy"])
            history = model.fit(x_train,
                                y_train,
                                batch_size=64,
                                epochs=2,
                                validation_split=0.2)
            test_scores = model.evaluate(x_test, y_test, verbose=2)

        hook = smd.get_hook()
        assert hook
        hook.close()
        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."

        # DEFAULT TENSORS SAVED
        assert len(trial.tensor_names(
            collection=CollectionKeys.LOSSES)) > 0, "No Losses Saved"
        assert len(trial.tensor_names(
            collection=CollectionKeys.METRICS)) > 0, "No Metrics Saved"
        assert (len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 0
                ), "Weights were not expected to be saved by default"
        assert (len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 0
                ), "Biases were not expected to be saved by default"
def helper_test_keras_v2_json_config(json_file_contents,
                                     script_mode: bool = False,
                                     eager_mode: bool = True):
    """ Tests ZCC with custom hook configs """
    smd.del_hook()
    tf.keras.backend.clear_session()
    if not eager_mode:
        tf.compat.v1.disable_eager_execution()
    with SagemakerSimulator(json_file_contents=json_file_contents) as sim:
        model = get_keras_model_v2()
        (x_train, y_train), (x_test, y_test) = get_keras_data()
        x_train, x_test = x_train / 255, x_test / 255

        opt = tf.keras.optimizers.RMSprop()
        if script_mode:
            hook = smd.KerasHook.create_from_json_file()
            opt = hook.wrap_optimizer(opt)
            model.compile(loss="sparse_categorical_crossentropy",
                          optimizer=opt,
                          metrics=["accuracy"])
            history = model.fit(x_train,
                                y_train,
                                batch_size=64,
                                epochs=2,
                                validation_split=0.2,
                                callbacks=[hook])
            test_scores = model.evaluate(x_test,
                                         y_test,
                                         verbose=2,
                                         callbacks=[hook])
        else:
            model.compile(loss="sparse_categorical_crossentropy",
                          optimizer=opt,
                          metrics=["accuracy"])
            history = model.fit(x_train,
                                y_train,
                                epochs=2,
                                batch_size=64,
                                validation_split=0.2)
            test_scores = model.evaluate(x_test, y_test, verbose=2)

        hook = smd.get_hook()
        assert hook
        hook.close()
        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
        if not eager_mode:
            assert len(trial.tensor_names(collection="gradients")) > 0
        assert len(trial.tensor_names(collection="weights")) > 0
        assert len(trial.tensor_names(collection="losses")) > 0
Exemplo n.º 21
0
def test_keras_to_estimator(script_mode):
    """ Works as intended. """
    import tensorflow.compat.v1.keras as keras

    tf.reset_default_graph()
    smd.del_hook()
    keras.backend.clear_session()
    with SagemakerSimulator() as sim:
        model = keras.models.Sequential([
            keras.layers.Dense(16, activation="relu", input_shape=(4, )),
            keras.layers.Dropout(0.2),
            keras.layers.Dense(1, activation="sigmoid"),
        ])

        def input_fn():
            split = tfds.Split.TRAIN
            data_dir = TEST_DATASET_S3_PATH if use_s3_datasets() else None
            dataset = tfds.load("iris",
                                data_dir=data_dir,
                                split=split,
                                as_supervised=True)
            dataset = dataset.map(lambda features, labels:
                                  ({
                                      "dense_input": features
                                  }, labels))
            dataset = dataset.batch(32).repeat()
            return dataset

        model.compile(loss="categorical_crossentropy", optimizer="adam")
        model.summary()

        keras_estimator = tf.keras.estimator.model_to_estimator(
            keras_model=model, model_dir=sim.out_dir)

        if script_mode:
            hook = smd.EstimatorHook(sim.out_dir)
            hook.set_mode(smd.modes.TRAIN)
            keras_estimator.train(input_fn=input_fn, steps=25, hooks=[hook])
            hook.set_mode(smd.modes.EVAL)
            eval_result = keras_estimator.evaluate(input_fn=input_fn,
                                                   steps=10,
                                                   hooks=[hook])
        else:
            keras_estimator.train(input_fn=input_fn, steps=25)
            keras_estimator.evaluate(input_fn=input_fn, steps=10)

        tr = smd.create_trial(sim.out_dir)
        assert len(tr.tensor_names()) == 1
        assert tr.steps() == [0, 25]
        assert len(tr.steps(smd.modes.TRAIN)) == 1
        assert len(tr.steps(smd.modes.EVAL)) == 1
Exemplo n.º 22
0
def test_keras_fit_false(out_dir, tf_eager_mode=False):
    test_include_collections = [
        CollectionKeys.LOSSES,
        CollectionKeys.METRICS,
        CollectionKeys.WEIGHTS,
        CollectionKeys.BIASES,
        CollectionKeys.GRADIENTS,
        CollectionKeys.INPUTS,
        CollectionKeys.OUTPUTS,
        CollectionKeys.LAYERS,
        CollectionKeys.OPTIMIZER_VARIABLES,
    ]
    hook = smd.KerasHook(out_dir=out_dir,
                         include_collections=test_include_collections)
    helper_keras_fit(
        include_collections=test_include_collections,
        trial_dir=out_dir,
        hook=hook,
        run_eagerly=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )
    trial = smd.create_trial(path=out_dir)

    # We first assert that none of the collections we requested for are empty
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) == 4
    assert len(trial.tensor_names(
        collection=CollectionKeys.INPUTS)) == 1  # 1 Model Input
    assert len(trial.tensor_names(
        collection=CollectionKeys.OUTPUTS)) == 2  # 2 Model outputs
    assert len(
        trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5

    # We assert that all the tensors saved have a valid value
    for tname in trial.tensor_names():
        assert trial.tensor(tname).value(0) is not None

    # We then analyse Layer Inputs and Layer Outputs
    # Check that output of layer is equal to the input of the next
    boolean_matrix = trial.tensor("flatten_1/outputs").value(
        0) == trial.tensor("dense_2/inputs").value(0)
    assert boolean_matrix.all()
    boolean_matrix = trial.tensor("dense_2/outputs").value(0) == trial.tensor(
        "dropout_1/inputs").value(0)
    assert boolean_matrix.all()
    boolean_matrix = trial.tensor("dropout_1/outputs").value(
        0) == trial.tensor("dense_3/inputs").value(0)
    assert boolean_matrix.all()
Exemplo n.º 23
0
def test_keras_fit(out_dir, tf_eager_mode, saveall):
    hook = smd.KerasHook(out_dir=out_dir, save_all=saveall)
    ts = time.time()
    hook.save_scalar("foobar", 1, sm_metric=True, timestamp=ts)
    scalars_to_be_saved = dict()
    scalars_to_be_saved["scalar/foobar"] = (ts, 0)
    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        run_eagerly=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x eager mode
    if saveall:  # save losses, metrics, weights, biases, scalar
        if tf_eager_mode:
            if is_tf_2_2():
                assert len(trial.tensor_names()) == 28
            else:
                assert len(trial.tensor_names()) == (21 if is_tf_2_3() else 14)
            assert len(trial.tensor_names(collection=CollectionKeys.INPUTS)) == (
                1 if is_tf_2_2() else 0
            )
            assert len(trial.tensor_names(collection=CollectionKeys.OUTPUTS)) == (
                2 if is_tf_2_2() else 0
            )
        else:
            assert len(trial.tensor_names()) == 21
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
        assert (
            len(
                trial.tensor_names(
                    collection=CollectionKeys.OPTIMIZER_VARIABLES, mode=ModeKeys.EVAL
                )
            )
            == 0,
            "No Optimizer Variables Should be Saved in EVAL Mode",
        )
    else:  # save the default losses and metrics
        assert len(trial.tensor_names()) == (
            4 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 5
        )
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == (
        2 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 3
    )
    for tname in trial.tensor_names():
        assert trial.tensor(tname).value(0) is not None
Exemplo n.º 24
0
def test_include_only_custom_collection(out_dir, tf_eager_mode):
    include_collections = ["custom_optimizer_variables"]
    save_config = SaveConfig(save_interval=3)
    hook = smd.KerasHook(
        out_dir,
        save_config=save_config,
        include_collections=include_collections,
        reduction_config=ReductionConfig(norms=ALLOWED_NORMS, reductions=ALLOWED_REDUCTIONS),
    )
    hook.get_collection("custom_optimizer_variables").include("Adam")
    helper_keras_fit(out_dir, hook=hook, steps=["train", "eval", "predict"], eager=tf_eager_mode)

    trial = smd.create_trial(path=out_dir)
    assert len(trial.tensor_names()) == (8 if is_tf_2_2() and tf_eager_mode else 9)
    assert len(trial.tensor_names(collection="custom_optimizer_variables")) == 5
Exemplo n.º 25
0
def test_gradtape_persistent(out_dir, saveall):
    """
    Test save all and save default collection
    """
    hook = smd.KerasHook(out_dir=out_dir, save_all=saveall, save_config=SaveConfig(save_interval=3))
    helper_keras_gradtape(trial_dir=out_dir, hook=hook, persistent=True)

    trial = smd.create_trial(path=out_dir)
    if saveall:  # save losses, metrics, weights, biases
        assert len(trial.tensor_names()) == 10
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    else:  # save the default losses and metrics
        assert len(trial.tensor_names()) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 1
Exemplo n.º 26
0
def test_hook_from_json(out_dir, tf_eager_mode, monkeypatch):
    monkeypatch.setenv(
        CONFIG_FILE_PATH_ENV_STR,
        "tests/tensorflow/hooks/test_json_configs/test_collection_defaults.json",
    )
    hook = smd.KerasHook.create_from_json_file()
    helper_keras_fit(out_dir, hook=hook, steps=["train"], run_eagerly=tf_eager_mode)

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x
    assert len(trial.tensor_names()) == (5 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 6)
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 0
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == (
        2 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 3
    )
Exemplo n.º 27
0
def test_estimator(script_mode):
    """ Works as intended. """
    smd.del_hook()
    tf.reset_default_graph()
    with SagemakerSimulator() as sim:
        train_steps, eval_steps = 80, 20
        helper_train(
            script_mode=script_mode, sim=sim, train_steps=train_steps, eval_steps=eval_steps
        )

        # Check that hook created and tensors saved
        trial = smd.create_trial(path=sim.out_dir)
        print(trial)
        assert smd.get_hook() is not None, "Hook was not created."
        assert len(trial.steps()) > 0, "Nothing saved at any step."
        assert len(trial.tensor_names()) > 0, "Tensors were not saved."
        assert trial.steps() == [0, train_steps], "Wrong step count for trial."
Exemplo n.º 28
0
def test_keras_gradtape(out_dir, saveall):
    """
    Test save all and save default collection
    """
    hook = smd.KerasHook(out_dir=out_dir, save_all=saveall, save_config=SaveConfig(save_interval=3))
    helper_keras_gradtape(trial_dir=out_dir, hook=hook)

    trial = smd.create_trial(path=out_dir)
    if saveall:  # save losses, metrics, weights, biases
        assert len(trial.tensor_names()) == (25 if is_tf_2_2() else 15)
        assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
        assert len(trial.tensor_names(collection=CollectionKeys.OPTIMIZER_VARIABLES)) == 5
    else:  # save the default losses and metrics
        assert len(trial.tensor_names()) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == 1
Exemplo n.º 29
0
def test_save_gradients(out_dir, tf_eager_mode):
    # explicitly save INPUTS and OUTPUTS
    include_collections = [CollectionKeys.GRADIENTS]
    hook = smd.KerasHook(out_dir=out_dir, include_collections=include_collections)

    helper_keras_fit(
        trial_dir=out_dir,
        hook=hook,
        eager=tf_eager_mode,
        steps=["train", "eval", "predict", "train"],
    )
    trial = smd.create_trial(path=out_dir)
    assert len(trial.tensor_names(collection=CollectionKeys.GRADIENTS)) == 4

    for tname in trial.tensor_names(collection=CollectionKeys.GRADIENTS):
        output = trial.tensor(tname)
        assert output.value(0) is not None
Exemplo n.º 30
0
def test_weights_collections(out_dir, tf_eager_mode):
    hook = smd.KerasHook(
        out_dir,
        save_config=SaveConfig(save_interval=3),
        include_collections=[CollectionKeys.WEIGHTS],
    )

    helper_keras_fit(out_dir, hook=hook, steps=["train"], run_eagerly=tf_eager_mode)

    trial = smd.create_trial(path=out_dir)
    # can't save gradients in TF 2.x
    assert len(trial.tensor_names()) == (5 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 6)
    assert len(trial.tensor_names(collection=CollectionKeys.BIASES)) == 0
    assert len(trial.tensor_names(collection=CollectionKeys.WEIGHTS)) == 2
    assert len(trial.tensor_names(collection=CollectionKeys.LOSSES)) == 1
    assert len(trial.tensor_names(collection=CollectionKeys.METRICS)) == (
        2 if (is_tf_2_2() or is_tf_2_3()) and tf_eager_mode else 3
    )