# muca.py # # Copyright 2007 Frank Eisenmenger, U.H.E. Hansmann, # Jan H. Meinke, Sandipan Mohanty # import sys sys.path.append('../..') import smmp, universe, protein smmp.epar_l.flex = 0 smmp.epar_l.sh2 = 0 smmp.epar_l.epsd = 0 smmp.epar_l.ientyp = 0 smmp.isolty.itysol = 0 smmp.init_energy('./SMMP/') smmp.mol_i.ntlml=0 smmp.sgrnd(31433) smmp.updchois.upchswitch = 0 smmp.updchois.rndord = 0 smmp.updchois.bgsprob = 0.3 smmp.init_lund() p = protein.Protein('../enkefa.seq', '../enkefa.var') smmp.multicanonical.mulcan_par(100000, 500, 1000, -12, 20, 1.0, 0) #smmp.multicanonical.mulcan_sim(100, 100000, 10, 1000, -12, 20, 1.0, 0)
simulation is slowly reduced from Tmax to Tmin. """ # Adds the source directory to Python's search path. import sys sys.path.append('../..') import smmp, universe, protein # Initialize the Universe to T=300K with the ECEPP/3 force field, no solvent # term (st = 0) and the sub directory SMMP/ as library path. Except for the # solvent term, these are the default values. Alternatively, we could have # written # myUniverse = universe.Universe(st=0) # to get the same result. myUniverse = universe.Universe(T=300, ff='ecepp2', st=0, libdir='SMMP/') # Create a new protein object from the sequence file ../enkefa.seq and # set the dihedral angles according to the values given in ../enkefa.var. p = protein.Protein('../enkefa.seq', '../enkefa.ann') # Make myUniverse aware of p. myUniverse.add(p) seed = 81236 smmp.sgrnd(seed) Tmin = 100 Tmax = 1000 equilibrationSweeps = 100 sweeps = 100000 measurementInterval = 1000 randomStart = 1 smmp.anneal(equilibrationSweeps, sweeps, measurementInterval, Tmax, Tmin, randomStart)
#!/usr/bin/env python # muca.py # # Copyright 2007 Frank Eisenmenger, U.H.E. Hansmann, # Jan H. Meinke, Sandipan Mohanty # import sys sys.path.append('../..') import smmp, universe, protein smmp.epar_l.flex = 0 smmp.epar_l.sh2 = 0 smmp.epar_l.epsd = 0 smmp.epar_l.ientyp = 0 smmp.isolty.itysol = 0 smmp.init_energy('./SMMP/') smmp.mol_i.ntlml = 0 smmp.sgrnd(31433) smmp.updchois.upchswitch = 0 smmp.updchois.rndord = 0 smmp.updchois.bgsprob = 0.3 smmp.init_lund() p = protein.Protein('../enkefa.seq', '../enkefa.var') smmp.multicanonical.mulcan_par(100000, 500, 1000, -12, 20, 1.0, 0) #smmp.multicanonical.mulcan_sim(100, 100000, 10, 1000, -12, 20, 1.0, 0)
simulated annealing. In simulated annealing the temperature of a Monte Carlo simulation is slowly reduced from Tmax to Tmin. """ # Adds the source directory to Python's search path. import sys sys.path.append('../..') import smmp, universe, protein # Initialize the Universe to T=300K with the ECEPP/3 force field, no solvent # term (st = 0) and the sub directory SMMP/ as library path. Except for the # solvent term, these are the default values. Alternatively, we could have # written # myUniverse = universe.Universe(st=0) # to get the same result. myUniverse = universe.Universe(T=300, ff = 'ecepp2', st = 0, libdir ='SMMP/') # Create a new protein object from the sequence file ../enkefa.seq and # set the dihedral angles according to the values given in ../enkefa.var. p = protein.Protein('../enkefa.seq', '../enkefa.ann') # Make myUniverse aware of p. myUniverse.add(p) seed = 81236 smmp.sgrnd(seed) Tmin = 100 Tmax = 1000 equilibrationSweeps = 100 sweeps = 100000 measurementInterval = 1000 randomStart = 1 smmp.anneal(equilibrationSweeps, sweeps, measurementInterval, Tmax, Tmin, randomStart)