Exemplo n.º 1
0
def import_stats(lst=None, d_lower=dt(2021, 1, 1)):
    """Use list of most recent dsc and combine into dataframe"""

    if lst is None:
        lst = get_recent_dsc_all(d_lower=d_lower)

    if isinstance(lst, dict):
        dfs = []
        for unit, lst_csv in tqdm(lst.items()):

            # try to find/load csv, or move to next if fail
            for p in lst_csv:
                try:
                    p_csv = stats_from_dsc(p)
                    df_single = get_stats(p=p_csv)
                    dfs.append(df_single)
                    break
                except Exception as e:
                    log.warning(f'Failed to load csv: {p}, \n{str(e)}')

        df = pd.concat(dfs)

    else:
        df = pd.concat([get_stats(stats_from_dsc(p)) for p in lst])

    return df
Exemplo n.º 2
0
    def __init__(self,
                 d_lower=None,
                 components=None,
                 minesite='FortHills',
                 **kw):
        super().__init__(**kw)
        a, b, c = self.a, self.b, self.c

        self.cols = [
            a.UID, a.Unit, a.Title, a.WorkOrder, c.Component, c.Modifier,
            a.DateAdded, a.SMR, a.ComponentSMR, a.Floc
        ]

        if d_lower is None:
            d_lower = dt(2020, 4, 1)

        if components is None:
            components = [
                'Spindle', 'Front Suspension', 'Rear Suspension',
                'Steering Cylinder'
            ]

        self.fltr \
            .add(ct=a.DateAdded >= d_lower) \
            .add(ct=c.Component.isin(components)) \
            .add(ct=a.MineSite == minesite)
Exemplo n.º 3
0
def example():
    fltr = dict(customer_name='fort hills',
                component_id='spindle',
                unitModel='980')
    oils = OilSamplesDownloader(fltr=fltr)
    oils.load_samples_fluidlife(d_lower=dt(2020, 6, 1))

    return oils
Exemplo n.º 4
0
def import_history():
    from smseventlog import queries as qr

    oils = OilSamplesDownloader()
    rng = pd.date_range(dt(2020, 1, 1), dt(2021, 4, 1), freq='M')

    for d in rng:
        d_lower, d_upper = qr.first_last_month(d)
        d_upper = d_upper + delta(days=1)

        oils.load_samples_fluidlife(d_lower=d_lower,
                                    d_upper=d_upper,
                                    save_samples=True)
        df = oils.df_samples()
        p = cf.desktop / 'fluidlife.csv'
        df.to_csv(p)
        print(f'rows downloaded from fluidlife: {df.shape}')
        oils.to_sql()
Exemplo n.º 5
0
    def __init__(self,
                 d: dt = None,
                 d_rng: Tuple[dt] = None,
                 minesite: str = None,
                 mw=None,
                 rep_type: str = 'pdf',
                 **kw):
        # dict of {df_name: {func: func_definition, da: **da, df=None}}
        dfs, charts, sections, exec_summary, style_funcs = {}, {}, {}, {}, {}
        signatures = []
        self.html_template = 'report_template.html'
        dfs_loaded = False
        p_rep = None

        if d is None:
            d = dt.now() + delta(days=-31)
        if d_rng is None:
            d_rng = qr.first_last_month(d=d)

        # make sure everything is date not datetime
        if isinstance(d_rng[0], dt):
            d_rng = (d_rng[0].date(), d_rng[1].date())

        # don't use current ytd until first monthly report end of jan
        cur_year = dt.now().year
        d = dt(cur_year, 1, 1)
        d_end_jan = qr.first_last_month(d)[1].date()

        if d_rng[1] < d_end_jan:
            d_rng_ytd = (dt(cur_year - 1, 1, 1), dt(cur_year - 1, 12, 31))
        else:
            d_rng_ytd = (dt(cur_year, 1, 1).date(), d_rng[1])

        include_items = dict(title_page=False,
                             truck_logo=False,
                             exec_summary=False,
                             table_contents=False,
                             signature_block=False)

        env = Environment(loader=FileSystemLoader(str(p_reports)))

        f.set_self(vars())
Exemplo n.º 6
0
def zip_recent_dls(units, d_lower=dt(2020, 1, 1)):
    # get most recent dsc from list of units and zip parent folder for attaching to TSI
    if not isinstance(units, list):
        units = [units]
    lst = []
    for unit in units:
        lst.extend(get_recent_dsc_single(unit=unit, d_lower=d_lower))

    lst_zip = [fl.zip_folder_threadsafe(p_src=p.parent, delete=False) for p in lst]

    return lst_zip
Exemplo n.º 7
0
    def __init__(
            self,
            ftype: str,
            d_lower: dt = dt(2020, 1, 1),
            max_depth: int = 4,
            search_folders: list = ['downloads']):

        self.collected_files = []
        self.collected_files_dict = {}
        self.folder_search = FolderSearch(ftype=ftype, d_lower=d_lower, max_depth=max_depth)

        f.set_self(vars())
Exemplo n.º 8
0
def df_months():
    # Month
    cols = ['StartDate', 'EndDate', 'Name']
    d_start = dt.now() + delta(days=-365)
    d_start = dt(d_start.year, d_start.month, 1)

    m = {}
    for i in range(24):
        d = d_start + relativedelta(months=i)
        name = f'{d:%Y-%m}'
        m[name] = (*first_last_month(d), name)

    return pd.DataFrame.from_dict(m, columns=cols, orient='index')
Exemplo n.º 9
0
    def __init__(self, d: dt, minesite='FortHills', **kw):
        super().__init__(**kw)
        a, b = pk.Tables('UnitID', 'UnitSMR')

        d_lower = dt(d.year, d.month, 1)
        dates = (d_lower, d_lower + relativedelta(months=1)
                 )  # (2020-12-01, 2021-01-01)

        cols = [a.Unit, b.DateSMR, b.SMR]

        q = Query.from_(a).select(*cols) \
            .left_join(b).on_field('Unit') \
            .where((a.MineSite == minesite) & (b.DateSMR.isin(dates) & (a.ExcludeMA.isnull())))

        f.set_self(vars())
Exemplo n.º 10
0
    def setModelData(self, editor, model, index):
        editor_date = getattr(editor, self.date_type)()
        if isinstance(self, TimeDelegate):
            # get date from DateAdded
            index_dateadded = index.siblingAtColumn(
                model.get_col_idx('Date Added'))
            d1 = model.data(index=index_dateadded,
                            role=TableDataModel.RawDataRole)
            if d1 is None:
                d1 = dt.now()

            t = QTime(editor_date).toPyTime()
            d = dt(d1.year, d1.month, d1.day, t.hour, t.minute)
        else:
            # d = QDateTime(editor_date).toPyDateTime()
            d = f.convert_date(editor_date.toPyDate())

        model.setData(index, d)
Exemplo n.º 11
0
def get_recent_dsc_single(
        unit: str,
        d_lower: dt = dt(2020, 1, 1),
        year: str = None,
        all_files: bool = False,
        ftype: str = 'dsc',
        max_depth: int = 3):
    """Return list of most recent dsc folder from each unit
    - OR most recent fault... could extend this for any filetype

    Parameters
    ----------
    d_lower : datetime, optional,
        limit search by date, default dt(2020,1,1)
    unit : str, optional
    all_files: bool
        return dict of unit: list of all sorted files

    Returns
    -------
    list | dict
    """
    lst = []
    uf = efl.UnitFolder(unit=unit)

    p_dls = uf.p_dls

    if not year is None:
        p_year = p_dls / year
        if p_year.exists():
            p_dls = p_year

    lst_unit = utl.FolderSearch(ftype, d_lower=d_lower, max_depth=max_depth).search(p_dls)

    if lst_unit:
        lst_unit.sort(key=lambda p: date_from_dsc(p), reverse=True)

        if not all_files:
            lst.append(lst_unit[0])
        else:
            lst.extend(lst_unit)

    return lst
Exemplo n.º 12
0
    def process_df(self, df):
        """Pivot raw df for fc summary table"""
        self.df_orig = df.copy()

        df_shape = df.shape  # saving to var for err troubleshooting
        if len(df) == 0:
            return df
        # create summary (calc complete %s)
        df2 = pd.DataFrame()
        gb = df.groupby('FC Number')

        df2['Total'] = gb['Complete'].count()
        df2['Complete'] = gb.apply(lambda x: x[x['Complete'] == 'Y']['Complete'].count())
        df2['Total Complete'] = df2.Complete.astype(str) + ' / ' + df2.Total.astype(str)
        df2['% Complete'] = df2.Complete / df2.Total
        df2 = df2.drop(columns=['Total', 'Complete']) \
            .rename_axis('FC Number') \
            .reset_index()

        # If ALL values in column are null (Eg ReleaseDate) need to fill with dummy var to pivot
        for col in ['Release Date', 'Expiry Date']:
            if df[col].isnull().all():
                df[col] = dt(1900, 1, 1).date()

        index = [c for c in df.columns if not c in ('Unit', 'Complete')]  # use all df columns except unit, complete

        df = df \
            .fillna(dict(Hrs=0)) \
            .pipe(f.multiIndex_pivot, index=index, columns='Unit', values='Complete') \
            .reset_index() \
            .merge(right=df2, how='left', on='FC Number')  # merge summary

        # reorder cols after merge
        cols = list(df)
        endcol = 10
        cols.insert(endcol + 1, cols.pop(cols.index('Total Complete')))
        cols.insert(endcol + 2, cols.pop(cols.index('% Complete')))
        df = df.loc[:, cols]

        df.pipe(self.sort_by_fctype)

        return df
Exemplo n.º 13
0
def process_files(
        ftype: str,
        units: list = None,
        search_folders: list = ['downloads'],
        d_lower: dt = dt(2020, 1, 1),
        max_depth: int = 4,
        import_: bool = True,
        parallel: bool = True) -> Union[int, pd.DataFrame]:
    """
    Top level control function - pass in single unit or list of units
    1. Get list of files (plm, fault, dsc)
    2. Process - import plm/fault or 'fix' dsc eg downloads folder structure

    TODO - make this into a FileProcessor class
    """

    if ftype == 'tr3':
        search_folders.append('vibe tests')  # bit sketch

    # assume ALL units # TODO: make this work for all minesites?
    units = f.as_list(units or all_units())
    search_folders = [item.lower() for item in search_folders]

    lst = []

    fl.drive_exists()
    for unit in units:
        p_unit = efl.UnitFolder(unit=unit).p_unit
        lst_search = [x for x in p_unit.iterdir() if x.is_dir() and x.name.lower()
                      in search_folders]  # start at downloads

        # could search more than just downloads folder (eg event too)
        for p_search in lst_search:
            lst.extend(FolderSearch(ftype, d_lower=d_lower, max_depth=max_depth).search(p_search))

        # process all dsc folders per unit as we find them
        if ftype == 'dsc':
            log.info(f'Processing dsc, unit: {unit} | dsc folders found: {len(lst)}')

            # group by "downloads/2021/F301 - 2021-01-01 - DLS" to avoid parallel collisions
            lst_grouped = [list(g) for _, g in itertools.groupby(
                lst, lambda p: fl.get_parent(p, 'downloads', offset=2).name)]

            def proc_dsc_batch(lst: List[Path]) -> None:
                """Process batch of dsc files that may be in the same top folder"""
                for p in lst:
                    dls.fix_dsc(p)

            Parallel(n_jobs=-1, verbose=11)(delayed(proc_dsc_batch)(lst=lst) for lst in lst_grouped)
            # Parallel(n_jobs=-1, verbose=11)(delayed(dls.fix_dsc)(p=p) for p in lst)
            # return lst
            # if parallel:
            # else:
            #     # when calling "all_units", process individual files per unit in sequence to avoid conflicts

            #     for p in lst:
            #         dls.fix_dsc(p=p)

            lst = []  # need to reset list, only for dsc, this is a bit sketch
        elif ftype == 'tr3':
            for p in lst:
                dls.move_tr3(p=p)

            lst = []

    # collect all csv files for all units first, then import together
    if ftype in ('plm', 'fault'):
        log.info(f'num files: {len(lst)}')
        if lst:
            df = combine_csv(lst_csv=lst, ftype=ftype, d_lower=d_lower)
            return import_csv_df(df=df, ftype=ftype) if import_ else df

        else:
            return pd.DataFrame()  # return blank dataframe
Exemplo n.º 14
0
 def example(cls):
     d_rng = (dt(2016, 1, 1), dt(2020, 12, 31))
     return cls(d_rng=d_rng, minesite='FortHills')
Exemplo n.º 15
0
 def example(cls):
     return cls(unit='F306',
                d_upper=dt(2020, 10, 18),
                d_lower=dt(2019, 10, 18))
Exemplo n.º 16
0
def first_last_month(d):
    d_lower = dt(d.year, d.month, 1)
    d_upper = d_lower + relativedelta(months=1) + delta(days=-1)
    return (d_lower, d_upper)