Exemplo n.º 1
0
class LinearSolver(object):
    def __init__(self, **kwargs):
        self.mtx = None
        self.rhs = None

        self.options = OptionsDictionary()
        self.options.declare("print_init", True, types=bool)
        self.options.declare("print_solve", True, types=bool)
        self._initialize()
        self.options.update(kwargs)

    def _initialize(self):
        pass

    def _setup(self, mtx, printer, mg_matrices=[]):
        pass

    def _solve(self, rhs, sol=None, ind_y=0):
        pass

    def _clone(self):
        clone = self.__class__()
        clone.options.update(clone.options._dict)
        return clone

    @contextlib.contextmanager
    def _active(self, active):
        orig_active = self.printer.active

        self.printer.active = self.printer.active and active
        yield self.printer
        self.printer.active = orig_active
def globalSurrogateModel(data, pr):
    pr.callingFunction = "globalSurrogate"
    data["prediction"] = pr.predict(data)

    ttdE = testTrainData(data, pr, encoded=True)
    ttdNE = testTrainData(data, pr, encoded=False)

    options = OptionsDictionary()
    options.declare("ndim", 1.0, types=float)
    options.declare("return_complex", False, types=bool)
    xlimits = np.zeros((int(options["ndim"]), 4))
    xlimits[:, 0] = -2.0
    xlimits[:, 1] = 2.0
    funXLimits = xlimits
    ndim = 4

    # models retrieved from https://github.com/SMTorg/smt/blob/master/tutorial/SMT_Tutorial.ipynb
    models = pd.Series()
    models["linear"] = Model(linearModel, ttdE)
    models["quadratic"] = Model(quadraticModel, ttdE)
    # models["kriging"] = Model(kriging, ttdE, ndim=ndim)
    # models["KPLSK"] = Model(kPLSK, ttdE)
    models["IDW"] = Model(iDW, ttdE)
    models["RBF"] = Model(rBF, ttdE)
    #models["RMTBSimba"] = Model(rMTBSimba, ttdNE,  xL = funXLimits)
    #models["GEKPLS"] = Model(gEKPLS, ttdNE, xL = funXLimits, ndim = ndim)
    #models["DEKPLS"] = Model(dEKPLS, ttdNE, xL = funXLimits, ndim = ndim)

    for model in models:
        compareToOrig(model.t, model.title, model.xtest, model.ytest)
Exemplo n.º 3
0
class Sampling(object):
    def __init__(self, **kwargs):
        self.options = OptionsDictionary()
        self.options.declare('xlimits', types=np.ndarray)
        self._declare_options()
        self.options.update(kwargs)

    def _declare_options(self):
        pass

    def __call__(self, n):
        """
        Compute the requested number of sampling points.

        Arguments
        ---------
        n : int
            Number of points requested.

        Returns
        -------
        ndarray[n, nx]
            The sampling locations in the input space.
        """
        xlimits = self.options['xlimits']
        nx = xlimits.shape[0]

        x = self._compute(n)
        for kx in range(nx):
            x[:,
              kx] = xlimits[kx,
                            0] + x[:, kx] * (xlimits[kx, 1] - xlimits[kx, 0])

        return x
Exemplo n.º 4
0
class NdimRosenbrock(Problem):
    def __init__(self, ndim=1, w=0.2):
        self.problem = ReducedProblem(Rosenbrock(ndim=ndim + 1),
                                      np.arange(1, ndim + 1),
                                      w=w)

        self.options = OptionsDictionary()
        self.options.declare("ndim", ndim, types=int)
        self.options.declare("return_complex", False, types=bool)
        self.options.declare("name", "NdimRosenbrock", types=str)

        self.xlimits = self.problem.xlimits

    def _evaluate(self, x, kx):
        return self.problem._evaluate(x, kx)
Exemplo n.º 5
0
class Problem(object):
    def __init__(self, **kwargs):
        self.options = OptionsDictionary()
        self.options.declare('ndim', 1, types=int)
        self._declare_options()
        self.options.update(kwargs)

        self.xlimits = np.zeros((self.options['ndim'], 2))

        self._initialize()

    def _declare_options(self):
        pass

    def _initialize(self):
        pass

    def __call__(self, x, kx=None):
        """
        Arguments
        ---------
        x : ndarray[ne, nx]
            Evaluation points.
        kx : int or None
            Index of derivative (0-based) to return values with respect to.
            None means return function value rather than derivative.

        Returns
        -------
        ndarray[ne, 1]
            Functions values if kx=None or derivative values if kx is an int.
        """
        if not isinstance(x, np.ndarray) or len(x.shape) != 2:
            raise TypeError('x should be a rank-2 array.')
        elif x.shape[1] != self.options['ndim']:
            raise ValueError('The second dimension of x should be %i' %
                             self.options['ndim'])

        if kx is not None:
            if not isinstance(kx, int) or kx < 0:
                raise TypeError('kx should be None or a non-negative int.')

        return self._evaluate(x, kx)
Exemplo n.º 6
0
class NdimStepFunction(Problem):
    def __init__(self, ndim=1, width=10.0):
        self.problem = TensorProduct(ndim=ndim, func="tanh", width=width)

        self.options = OptionsDictionary()
        self.options.declare("ndim", ndim, types=int)
        self.options.declare("return_complex", False, types=bool)
        self.options.declare("name", "NdimStepFunction", types=str)

        self.xlimits = self.problem.xlimits

    def _evaluate(self, x, kx):
        return self.problem._evaluate(x, kx)
Exemplo n.º 7
0
class NdimCantileverBeam(Problem):

    def __init__(self, ndim=1, w=0.2):
        self.problem = ReducedProblem(CantileverBeam(ndim=3*ndim), np.arange(1, 3*ndim, 3), w=w)

        self.options = OptionsDictionary()
        self.options.declare('ndim', ndim, types=int)
        self.options.declare('return_complex', False, types=bool)
        self.options.declare('name', 'NdimCantileverBeam', types=str)

        self.xlimits = self.problem.xlimits

    def _evaluate(self, x, kx):
        return self.problem._evaluate(x, kx)
Exemplo n.º 8
0
class NdimStepFunction(Problem):

    def __init__(self, ndim=1, width=10.0):
        self.problem = TensorProduct(ndim=ndim, func='tanh', width=width)

        self.options = OptionsDictionary()
        self.options.declare('ndim', ndim, types=int)
        self.options.declare('return_complex', False, types=bool)
        self.options.declare('name', 'NdimStepFunction', types=str)

        self.xlimits = self.problem.xlimits

    def _evaluate(self, x, kx):
        return self.problem._evaluate(x, kx)
Exemplo n.º 9
0
class NdimRobotArm(Problem):
    def __init__(self, ndim=1, w=0.2):
        self.problem = ReducedProblem(RobotArm(ndim=2 * (ndim + 1)),
                                      np.arange(3, 2 * (ndim + 1), 2),
                                      w=w)

        self.options = OptionsDictionary()
        self.options.declare('ndim', ndim, types=int)
        self.options.declare('return_complex', False, types=bool)
        self.options.declare('name', 'NdimRobotArm', types=str)

        self.xlimits = self.problem.xlimits

    def _evaluate(self, x, kx):
        return self.problem._evaluate(x, kx)
Exemplo n.º 10
0
class ReducedProblem(Problem):
    def __init__(self, problem, dims, w=0.2):
        """
        Arguments
        ---------
        problem : Problem
            Pointer to the Problem object being wrapped.
        dims : int or list/tuple of ints
            Either the number of dimensions or a list of the dimension indices that this
            problem uses.
        w : float
            The value to use for all unaccounted for inputs where 0/1 is lower/upper bound.
        """
        self.problem = problem
        self.w = w

        if isinstance(dims, int):
            self.dims = np.arange(dims)
            assert dims <= problem.options["ndim"]
        elif isinstance(dims, (list, tuple, np.ndarray)):
            self.dims = np.array(dims, int)
            assert np.max(dims) < problem.options["ndim"]
        else:
            raise ValueError("dims is invalid")

        self.options = OptionsDictionary()
        self.options.declare("ndim", len(self.dims), types=int)
        self.options.declare("return_complex", False, types=bool)
        self.options.declare("name",
                             "R_" + self.problem.options["name"],
                             types=str)

        self.xlimits = np.zeros((self.options["ndim"], 2))
        for idim, idim_reduced in enumerate(self.dims):
            self.xlimits[idim, :] = problem.xlimits[idim_reduced, :]

    def _evaluate(self, x, kx):
        """
        Arguments
        ---------
        x : ndarray[ne, nx]
            Evaluation points.
        kx : int or None
            Index of derivative (0-based) to return values with respect to.
            None means return function value rather than derivative.

        Returns
        -------
        ndarray[ne, 1]
            Functions values if kx=None or derivative values if kx is an int.
        """
        ne, nx = x.shape

        nx_prob = self.problem.options["ndim"]
        x_prob = np.zeros((ne, nx_prob), complex)
        for ix in range(nx_prob):
            x_prob[:, ix] = (1 - self.w) * self.problem.xlimits[
                ix, 0] + self.w * self.problem.xlimits[ix, 1]

        for ix in range(nx):
            x_prob[:, self.dims[ix]] = x[:, ix]

        if kx is None:
            y = self.problem._evaluate(x_prob, None)
        else:
            y = self.problem._evaluate(x_prob, self.dims[kx])

        return y
Exemplo n.º 11
0
class Problem(object):
    def __init__(self, **kwargs):
        """
        Constructor where values of options can be passed in.

        For the list of options, see the documentation for the problem being used.

        Parameters
        ----------
        **kwargs : named arguments
            Set of options that can be optionally set; each option must have been declared.

        Examples
        --------
        >>> from smt.problems import Sphere
        >>> prob = Sphere(ndim=3)
        """
        self.options = OptionsDictionary()
        self.options.declare("ndim", 1, types=int)
        self.options.declare("return_complex", False, types=bool)
        self._initialize()
        self.options.update(kwargs)

        self.xlimits = np.zeros((self.options["ndim"], 2))

        self._setup()

    def _initialize(self):
        """
        Implemented by problem to declare options (optional).

        Examples
        --------
        self.options.declare('option_name', default_value, types=(bool, int), desc='description')
        """
        pass

    def _setup(self):
        pass

    def __call__(self, x, kx=None):
        """
        Evaluate the function.

        Parameters
        ----------
        x : ndarray[n, nx] or ndarray[n]
            Evaluation points where n is the number of evaluation points.
        kx : int or None
            Index of derivative (0-based) to return values with respect to.
            None means return function value rather than derivative.

        Returns
        -------
        ndarray[n, 1]
            Functions values if kx=None or derivative values if kx is an int.
        """
        x = ensure_2d_array(x, "x")

        if x.shape[1] != self.options["ndim"]:
            raise ValueError("The second dimension of x should be %i" %
                             self.options["ndim"])

        if kx is not None:
            if not isinstance(kx, int) or kx < 0:
                raise TypeError("kx should be None or a non-negative int.")

        y = self._evaluate(x, kx)

        if self.options["return_complex"]:
            return y
        else:
            return np.real(y)

    def _evaluate(self, x, kx=None):
        """
        Implemented by surrogate models to evaluate the function.

        Parameters
        ----------
        x : ndarray[n, nx]
            Evaluation points where n is the number of evaluation points.
        kx : int or None
            Index of derivative (0-based) to return values with respect to.
            None means return function value rather than derivative.

        Returns
        -------
        ndarray[n, 1]
            Functions values if kx=None or derivative values if kx is an int.
        """
        raise Exception("This problem has not been implemented correctly")
Exemplo n.º 12
0
class SamplingMethod(object):
    def __init__(self, **kwargs):
        """
        Constructor where values of options can be passed in.

        For the list of options, see the documentation for the problem being used.

        Parameters
        ----------
        **kwargs : named arguments
            Set of options that can be optionally set; each option must have been declared.

        Examples
        --------
        >>> import numpy as np
        >>> from smt.sampling_methods import Random
        >>> sampling = Random(xlimits=np.arange(2).reshape((1, 2)))
        """
        self.options = OptionsDictionary()
        self.options.declare(
            "xlimits",
            types=np.ndarray,
            desc=
            "The interval of the domain in each dimension with shape nx x 2 (required)",
        )
        self._initialize()
        self.options.update(kwargs)

    def _initialize(self):
        """
        Implemented by sampling methods to declare options (optional).

        Examples
        --------
        self.options.declare('option_name', default_value, types=(bool, int), desc='description')
        """
        pass

    def __call__(self, nt):
        """
        Compute the requested number of sampling points.

        The number of dimensions (nx) is determined based on `xlimits.shape[0]`.

        Arguments
        ---------
        nt : int
            Number of points requested.

        Returns
        -------
        ndarray[nt, nx]
            The sampling locations in the input space.
        """
        xlimits = self.options["xlimits"]
        nx = xlimits.shape[0]

        x = self._compute(nt)
        for kx in range(nx):
            x[:,
              kx] = xlimits[kx,
                            0] + x[:, kx] * (xlimits[kx, 1] - xlimits[kx, 0])

        return x

    def _compute(self, nt):
        """
        Implemented by sampling methods to compute the requested number of sampling points.

        The number of dimensions (nx) is determined based on `xlimits.shape[0]`.

        Arguments
        ---------
        nt : int
            Number of points requested.

        Returns
        -------
        ndarray[nt, nx]
            The sampling locations in the input space.
        """
        raise Exception(
            "This sampling method has not been implemented correctly")