Exemplo n.º 1
0
def get_valid_mask(inprod, xx, yy):

    valid_mask = inprod.getMaskGroup().get("quality_flags_invalid")

    valid_mask_asmask = jpy.cast(valid_mask, Mask)

    return valid_mask_asmask.getSampleInt(xx, yy)
Exemplo n.º 2
0
def getS3bands(in_file, coords, band_names, s3_instrument, slstr_res):
    """Extract data from Sentinel-3 bands.

    Read the input S3 file and extract data from a list of given bands for the
    coordinates (in a provided list) located within the scene.

    Args:
        in_file (str): Path to a S3 OLCI image xfdumanisfest.xml file.
        coords (list): List of coordinates to extract the data from.
        band_names (list): List of bands names to extract the data from.
        errorfile (str): Path to the file where all errors are logged.
        s3_instrument (str): Sentinel-3 instrument name (OLCI or SLSTR).
        slstr_res (str): SLSTR reader resolution (500m or 1km).

    Returns:
        (dict): Dictionnary containing the band names and values for all
        coordinates extracted from the image.
        """
    # Make a dictionnary to store results
    stored_vals = {}

    # Open SNAP product
    prod = open_prod(in_file, s3_instrument, slstr_res)

    # Loop over coordinates to extract values.
    for coord in coords:

        # Check if data exists at the queried location
        # Transform lat/lon to position to x, y in scene
        xx, yy = pixel_position(prod, coord[1], coord[2])

        # Log if location is outside of file
        if not xx or not yy:
            pass

        else:
            #  For OLCI scenes, save resources by working on a small subset
            # around each coordinates pair contained within the S3 scene.
            # Doesn't process if the coordinates pair is not in the product.
            if s3_instrument == "OLCI":
                try:
                    prod_subset, pix_coords = subset(prod, coord[1], coord[2])
                    process_flag = True  # Set a flag to process data

                except:  # Bare except needed to catch the JAVA exception
                    prod_subset = None

                if not prod_subset or pix_coords[0] is None:
                    process_flag = False  # None to stop processing

            else:
                # If SLSTR, open full image: because of the bands at different
                # resolutions, a resampling would be necessary before being
                # able to subset. Therefore set the flag to continue.
                prod_subset = prod
                process_flag = True
                # As th entire scene is used, set pix_coords to xx, yy
                pix_coords = xx, yy

            if process_flag:  # Run the processing if OLCI subset exists
                # Before the processing, the validity of the opened product is
                # tested by opening the first band and querying the band at the
                # coordinate location. If SLSTR, just test the 500m product.
                # If the extraction test fails, an entry is created in the log.
                try:
                    # Get a specified band depending on the sensor
                    currentband = None
                    if s3_instrument == "OLCI":
                        # Extract pixel value for the band
                        currentband = prod_subset.getBand("Oa01_radiance")
                    else:
                        # Try out with bands for either resolution
                        currentband = prod_subset.getBand("S1_radiance_an")
                        if currentband is None:
                            currentband = prod_subset.getBand("F1_BT_in")

                    currentband.loadRasterData()  # Load raster band
                    # Test if the retrieval is possible
                    currentband.getPixelFloat(pix_coords[0], pix_coords[1])
                    currentband = None

                    # Marker to continue processing
                    processing = True

                except:  # Bare except needed to catch the JAVA exception
                    processing = False  # Deactivate processing

                if processing:
                    out_values = {}  # Initialise outvalues

                    # Extract bands from product
                    for band in band_names:

                        # Try to extract from band list
                        if band in list(prod_subset.getBandNames()):
                            currentband = None
                            currentband = prod_subset.getBand(band)
                            currentband.loadRasterData()
                            out_values[band] = round(
                                currentband.getPixelFloat(
                                    pix_coords[0], pix_coords[1]),
                                4,
                            )

                        # If not in band list, try from TiePointGrid
                        elif band in list(prod.getTiePointGridNames()):
                            out_values[band] = round(
                                getTiePointGrid_value(
                                    prod_subset,
                                    band,
                                    pix_coords[0],
                                    pix_coords[1],
                                ),
                                4,
                            )

                        # If not if TiePointGrid list try from Masks
                        elif band in list(
                                prod_subset.getMaskGroup().getNodeNames()):
                            currentmask = prod_subset.getMaskGroup().get(band)
                            currentmask_asmask = jpy.cast(currentmask, Mask)
                            out_values[band] = currentmask_asmask.getSampleInt(
                                pix_coords[0], pix_coords[1])

                        else:
                            # Capture error
                            raise SyntaxError(
                                "Band '%s' does not exist in image: %s" %
                                (band, prod.getName()))

                    # Update the full dictionnary
                    stored_vals.update({coord[0]: out_values})

                    # Garbage collector
                    prod_subset = None

    # Garbage collector
    prod = None

    return stored_vals
Exemplo n.º 3
0
bio_data = np.zeros(
    bioW * bioH, np.float32
)  #Return a new array of given shape and type, filled with zeros. Filled only x-ways. np.zeros(5) = {0,0,0,0,0}
bioBand.readPixels(
    0, 0, bioW, bioH, bio_data
)  #readPixels(x,y,w,h, Array) x : x offset of upper left corner. y : y offset of upper left corner. w : width. h : height. Array : output array
bio_data.shape = bioH, bioW

# Prepare radar image
r = ProductIO.readProduct(fileName)
radarBand = r.getBand(bandName)
radarW = radarBand.getRasterWidth()
radarH = radarBand.getRasterHeight()

# Initilization of raster band and geocoding for French Guyana and radar image
raster_Band = jpy.cast(bioBand, RasterDataNode)
raster_BandRadar = jpy.cast(radarBand, RasterDataNode)
geo_Coding = jpy.cast(raster_Band.getGeoCoding(),
                      GeoCoding)  #get geocoding of biomass map
geo_CodingRadar = jpy.cast(raster_BandRadar.getGeoCoding(),
                           GeoCoding)  #get geocoding of radar image

# Create mask of ROI on French Guyana .tif
polygon = pickle.load(open((maskPath + productName + 'Mask'), 'rb'))

img = Image.new('L', (bioW, bioH), 0)
ImageDraw.Draw(img).polygon(polygon, outline=1, fill=1)
mask = np.array(img)
imgplot = plt.imshow(mask)
imgplot.write_png(productName + 'Mask.png')
# OpType can be one of {MIN, MAX, MEDIAN, MEAN, STDDEV, EROSION, DILATION, OPENING, CLOSING}
opType = OpType.STDDEV
iterationCount = 1

kernel_data = [
    0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
    1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0,
    0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1,
    1, 1, 1, 1, 1, 0
]
kernel = Kernel(9, 9, 4, 4, 1 / 64, kernel_data)

filtered_band = GeneralFilterBand(filteredBandName, sourceRaster, opType,
                                  kernel, iterationCount)

# Turn into real Band
if realBand:
    target_band = Band(filtered_band.getName(), filtered_band.getDataType(),
                       filtered_band.getRasterWidth(),
                       filtered_band.getRasterHeight())
    target_band.setSourceImage(filtered_band.getSourceImage())
else:
    target_band = filtered_band

if isinstance(jpy.cast(sourceRaster, Band), Band):
    ProductUtils.copySpectralBandProperties(sourceRaster, target_band)

product.addBand(target_band)

ProductIO.writeProduct(product, out_file, 'BEAM-DIMAP')
Exemplo n.º 5
0
bandName = 'band_1'
savePath = 'D:/fyp-master/Polygon/'
polygon = []
topLeftLat = 4.431921373298707
topLeftLon = -52.14877215477987
botLeftLat = 2.885133324526054
botLeftLon = -52.468809464281705
botRightLat = 3.051240184812927
botRightLon = -53.258843412884204
topRightLat = 4.59619348038011
topRightLon = -52.9405767847531

radarImage = ProductIO.readProduct(fileName)
rasterBand = radarImage.getBand(bandName)

rasterBio = jpy.cast(rasterBand, RasterDataNode)
geo_CodingBio = jpy.cast(rasterBio.getGeoCoding(), GeoCoding) 

#Getting pixel positions
#POLYGON ((-54.459992631546 1.8573631048202515, -54.823678525590225 3.605360746383667, -52.60408776706431 4.070178031921387, -52.24492652190336 2.3271737098693848, -54.459992631546 1.8573631048202515))

pixPos = getPixCoord(geo_CodingBio, topLeftLat, topLeftLon)
print("Top Left: ", pixPos)
polygon.append(pixPos)

pixPos = getPixCoord(geo_CodingBio, botLeftLat, botLeftLon)
print("Bot Left: ", pixPos)
polygon.append(pixPos)

pixPos = getPixCoord(geo_CodingBio, botRightLat, botRightLon)
print("Bot Right: ", pixPos)