Exemplo n.º 1
0
def build_bundles(n):
    """
    Builds (the snappy names of) oriented punctured torus bundles of
    length at most n-1.
    """
    bundles = set()

    # perhaps more intelligent to enumerate fractions and find their
    # continued fractions.  However, the code below is only too slow
    # by a factor of n, and generates the bundles in the correct
    # "order" (harmonic >> Lebesgue as we care about the number of
    # tetrahedra, not the number of syllables)
    for i in range(n):
        for s in cartesian_product([letters]*i):
            s = "".join(s)
            try:
                M = snappy.Manifold("b++" + s)
                for N in M.identify(): bundles.add(N.name())
            except:
                pass
            try:
                M = snappy.Manifold("b+-" + s)
                for N in M.identify(): bundles.add(N.name())
            except:
                pass
    return bundles
def fix_table(new_table, snappy_name):
    name = repr(new_table).split(' ')[0][5:]
    fixed_file = open(name+'fixed2.txt','w')
    notfixed_file = open(name+'notfixed2.txt','w')

    name = name.replace('Table', 'Exteriors')
    old_table = getattr(snappy, snappy_name)
    conn2 = new_table._connection2
    c = conn2.cursor()
    for M_new in new_table:
        print(M_new.name())
        id, isosig = c.execute("SELECT id,triangulation FROM {} WHERE name='{}'".format(new_table._table,M_new.name())).fetchall()[0]
        M_old = old_table[M_new.name()]
        if M_new.num_cusps()>4:
            print('Skipped: '+M_new.name())
            notfixed_file.write(str(id)+','+M_new.name()+'\n')
            continue
        if same(M_new, M_old):
            assert same(snappy.Manifold(isosig),M_old)
            fixed_file.write(str(id)+','+M_new.name()+','+isosig+'\n')
        else:
            try:
                matching_iso = search_for_peripheral_match2(isosig,M_old)
            except ValueError:
                print("Klein thing")
                notfixed_file.write(str(id)+','+M_new.name()+'\n')
                continue
            if matching_iso:
                assert same(snappy.Manifold(matching_iso),M_old)
                fixed_file.write(str(id)+','+M_new.name()+','+matching_iso+'\n')
            else:
                print('No match found: '+ M_new.name())
                notfixed_file.write(str(id)+','+M_new.name()+'\n')
    fixed_file.close()
    notfixed_file.close()
Exemplo n.º 3
0
def graphics_failures(verbose):
    if cyopengl_works():
        print("Testing graphics ...")
        import snappy.CyOpenGL
        result = doctest_modules([snappy.CyOpenGL], verbose=verbose).failed
        snappy.Manifold('m004').dirichlet_domain().view().test()
        snappy.Manifold('m125').cusp_neighborhood().view().test()
        if use_modernopengl:
            snappy.Manifold('m004').inside_view().test()
        snappy.Manifold('4_1').browse().test()
        snappy.ManifoldHP('m004').dirichlet_domain().view().test()
        snappy.ManifoldHP('m125').cusp_neighborhood().view().test()
        if use_modernopengl:
            snappy.ManifoldHP('m004').inside_view().test()
        if root_is_fake():
            root = tk_root()
            if root:
                if windows:
                    print('Close the root window to finish.')
                else:
                    print('The windows will close in a few seconds.\n'
                          'Specify -w or --windows to avoid this.')
                    root.after(7000, root.destroy)
                root.mainloop()
    else:
        print("***Warning***: CyOpenGL not installed, so not tested")
        result = 0
    return result
Exemplo n.º 4
0
def check_row(row):
    same = same_labeled_triangulation_and_peripheral_curves
    M_old = snappy.Manifold(row['name'])
    M_new = snappy.Manifold(row['triangulation'])
    if M_old.num_cusps() == 1:
        if not same(M_old, M_new):
            M_new.set_peripheral_curves([[[-1, 0], [0, -1]]])
            if not same(M_new, M_old):
                print(row['name'], row['triangulation'])
Exemplo n.º 5
0
def make_plot(row, params=plot_default, extra_plots=None):
    if row['trans_arcs_highres'] is not None:
        arcs = row['trans_arcs_highres'].unpickle()
    else:
        arcs = row['trans_arcs'].unpickle()
    title = '$' + row['name'] + '$: genus = ' + repr(row['alex_deg'] // 2)
    plot = params['plot_cls'](arcs, title=title)
    ax = plot.figure.axis

    if extra_plots:
        for x, y in extra_plots:
            ax.plot(x, y)

    k = order_of_longitude(snappy.Manifold(row['name']))

    ax.plot((0, k), (0, 0))
    ax.legend_.remove()

    ax.set_xbound(0, k)
    ax.get_xaxis().tick_bottom()

    yvals = [p.imag for arc in arcs for p in arc]
    ax.set_ybound(1.1 * min(yvals), 1.1 * max(yvals))

    ytop = floor(1.1 * max(yvals))
    if 1 <= ytop <= 10:
        ax.set_yticks(range(-ytop, ytop + 1))
    elif 25 <= ytop <= 100:
        ticks = range(10, ytop, 10)
        ticks = [-y for y in ticks] + [0] + ticks
        ax.set_yticks(ticks)
    alex = PolynomialRing(QQ, 'a')(row['alex'])
    for z, e in unimodular_roots(alex):
        theta = k * rotation_angle(z)
        if e == 1:
            color = params['simple alex root']
        else:
            color = params['mult alex root']
        ax.plot([theta], [0], color=color, marker='o', markeredgecolor='black')

    M = snappy.Manifold(row['name'])
    for parabolic in eval(row['parabolic_PSL2R_details']):
        if len(parabolic) == 2:
            L, is_galois_conj_of_geom = parabolic
            points = [(0, L), (0, -L), (1, L), (1, -L)]
        else:
            x, y, is_galois_conj_of_geom = parabolic
            points = [(x, y)]
        if is_galois_conj_of_geom:
            color = params['galois of geom']
        else:
            color = params['other parabolic']
        for x, y in points:
            ax.plot([x], [y], color=color, marker='o', markeredgecolor='black')

    plot.figure.draw()
    return plot
def getNonHypList (manifoldName, cuspNum, coprimeList):
	nonHypList = []
	M = snappy.Manifold(manifoldName)
	for [i,j] in coprimeList: 
		M = snappy.Manifold(manifoldName)
		M.dehn_fill((i,j), cuspNum)
		if M.volume() < 0.5:
			nonHypList.append((i,j))
	return nonHypList
Exemplo n.º 7
0
def test_list_of_names(names, prec):
    for name in names:
        M = snappy.Manifold(name)
        ts = M.tetrahedra_field_gens()
        ans = ts.find_field(prec, 16, True, True)
        if ans is None:
            print M
Exemplo n.º 8
0
def test_snappy():
    for datum in snap_cusp_fields():
        M = snappy.Manifold(datum.manifold)
        ts = M.tetrahedra_field_gens()
        ans = ts.find_field(300, 16)
        if ans is None:
            print M
Exemplo n.º 9
0
def spinning_slopes(S):
    q_mat = quads_mat(S)
    T = S.triangulation()
    M = snappy.Manifold(T.snapPea())
    pc_mats = peripheral_curve_mats(M, T)
    slopes = unoriented_spinning_slopes(S, pc_mats, q_mat)
    return slopes
Exemplo n.º 10
0
def analyze_deeply(tri, angle):
    N = edge_equation_matrix_taut(tri, angle)
    N = Matrix(N)
    M = snappy.Manifold(tri.snappystring())

    # look at it
    alex = alex_is_monic(M)
    hyper = hyper_is_monic(M)
    non_triv, non_triv_sol = non_trivial_solution(N)
    full, full_sol = fully_carried_solution(N)
    try:
        assert non_triv or not full # full => non_triv
        assert alex or not full # full => fibered => alex is monic
        assert hyper or not full # full => fibered => hyper is monic
        assert alex or not hyper # hyper is monic => alex is monic
    except AssertError:
        print("contradiction in maths")
        raise
    if full:
        pass
    elif non_triv:
        print("non-triv sol (but not full)")
        print((alex, hyper))
    elif not alex or not hyper:
        print("no sol")
        print((alex, hyper))
    return None
Exemplo n.º 11
0
def onecuspgetexc(a, b, manifold):

    m = manifold.cusp_translations()[0][0]
    l = manifold.cusp_translations()[0][1]
    pairs = []
    shortcurves = []

    pairs.append([1, 0])
    for y in range(2, 7):
        pairs.append([1, y])
        pairs.append([-1, y])
    for x in range(-7, 7):
        pairs.append([x, 1])
        for y in range(2, 7):
            if x % y != 0 and y % x != 0:
                pairs.append([x, y])

    for [x, y] in pairs:
        if abs(x * l + y * m) < 6:
            shortcurves.append([x, y])
    hypshortcurves = []
    nonhypshortcurves = []
    for [c, d] in shortcurves:
        M = snappy.Manifold(mani)
        M.dehn_fill((a, b), 0)
        M.dehn_fill((c, d), 1)
        if hikmot.verify_hyperbolicity(M, False)[0]:
            hypshortcurves.append([a, b])
        else:
            nonhypshortcurves.append((c, d))
    return nonhypshortcurves
Exemplo n.º 12
0
def triangulation_and_triangulation_skeleton(snappy_string):
    M = snappy.Manifold(snappy_string)
    
#    M.dehn_fill((1,0))
#    MF = M.filled_triangulation()
    MC = snappy.snap.t3mlite.Mcomplex(M)
    return MC, TriangulationSkeleton(MC)
Exemplo n.º 13
0
def unverifiedfromname(name):

    strname = str(name)
    pairs = []
    pairs.append([1, 0])
    for y in range(2, 7):
        pairs.append([1, y])
        pairs.append([-1, y])
    for x in range(-6, 7):
        pairs.append([x, 1])
        for y in range(2, 7):
            if x % y != 0 and y % x != 0:
                pairs.append([x, y])

    hypshortcurves = []
    nonhypshortcurves = []
    for [c, d] in pairs:
        thismanifold = snappy.Manifold(strname)
        thismanifold.dehn_fill((c, d), 0)
        #print thismanifold, hikmot.verify_hyperbolicity(thismanifold,False)[0]
        if thismanifold.volume() > 0.2:
            hypshortcurves.append([c, d])
        else:
            nonhypshortcurves.append((c, d))
    return nonhypshortcurves
Exemplo n.º 14
0
def parabolic_psl2R(task):
    R = PolynomialRing(QQ, 'x')
    M = snappy.Manifold(task['name'])
    assert M.homology().elementary_divisors() == [0]
    ans = 0
    obs_classes = M.ptolemy_obstruction_classes()
    assert len(obs_classes) == 2
    for obs in obs_classes:
        V = M.ptolemy_variety(N=2, obstruction_class=obs)
        for sol in V.retrieve_solutions():
            p = R(sol.number_field())
            if p == 0:  # Field is Q
                n = 1
            else:
                n = num_real_roots(p)
            ans += n
            try:
                if sol.is_geometric():
                    task['real_places'] = n
            except:
                if obs._index > 0:
                    task['real_places'] = n

    task['parabolic_PSL2R'] = ans
    if 'real_places' in task:
        task['done'] = True
    return task
Exemplo n.º 15
0
def twocuspsgethypcurves(manifold):

    m = manifold.cusp_translations()[0][0]
    l = manifold.cusp_translations()[0][1]
    pairs = []
    shortcurves = []

    pairs.append([1, 0])
    for y in range(2, 7):
        pairs.append([1, y])
        pairs.append([-1, y])
    for x in range(-7, 7):
        pairs.append([x, 1])
        for y in range(2, 7):
            if x % y != 0 and y % x != 0:
                pairs.append([x, y])

    for [x, y] in pairs:
        if abs(x * l + y * m) < 6:
            shortcurves.append([x, y])

    hypshortcurves = []
    nonhypshortcurves = []

    for [a, b] in shortcurves:
        M = snappy.Manifold(mani)
        M.dehn_fill((a, b), 0)
        if hikmot.verify_hyperbolicity(M, False)[0]:
            hypshortcurves.append([a, b])
        else:
            nonhypshortcurves.append((a, b))
    print 'non hyp:'
    print nonhypshortcurves
    return hypshortcurves
Exemplo n.º 16
0
def compute_census_data(filename_in, filename_out, functions, verbose=0):
    ### each function takes in data about the triangulation, returns a string
    census_data = parse_data_file(filename_in)
    out = []
    for i, line in enumerate(census_data):
        line_data = line.split(
            ' '
        )  ## 0th is taut_sig, then may be other data we dont want to lose.
        taut_sig = line_data[0]
        regina_sig = taut_sig.split('_')[0]

        tri, angle = isosig_to_tri_angle(taut_sig)
        snappy_triang = snappy.Manifold(regina_sig)
        # snappy_triang = None
        triang_data = {
            'sig': taut_sig,
            'angle': angle,
            'tri': tri,
            'snappy_triang': snappy_triang,
            'old_data': line_data
        }

        line_out = []
        for func in functions:
            line_out.append(func(triang_data))

        out.append(line_out)

        if verbose > 0 and i % 1000 == 0:
            print(i, line_out)
    write_data_file(out, filename_out)
Exemplo n.º 17
0
def analyzeManifold(manifoldName, cuspNum, coprimeList):
    greaterThan = []
    lessThan = []
    notHyp = []
    miss = []

    for [i, j] in coprimeList:
        M = snappy.Manifold(manifoldName)
        M.dehn_fill((i, j), cuspNum)
        if M.volume() > 0.5:
            try:
                C = M.cusp_neighborhood()
                C.set_displacement(100)
                cuspArea = C.volume() * 2

                if cuspArea < 5.24: lessThan.append((i, j))
                else: greaterThan.append((i, j))

            except:
                # print 'Failed to construct cusp for ' + str((i,j)) +' surgery'
                miss.append((i, j))
                pass

        else:
            notHyp.append((i, j))

    return [len(lessThan), len(greaterThan), len(notHyp), len(miss)]
Exemplo n.º 18
0
def test_handles(code):
    code = code.strip()
    encode = list(map(int, code.split(',')))
    M = DT_handles_surface(encode).splitting(gluing="", handles="h")
    N = snappy.Manifold('DT[%s]' % str(code))

    assertManifoldsIsometric(M, N)
Exemplo n.º 19
0
def test_link_invariant():
    import snappy

    # DT codes of the same link but with different orientations of the
    # components

    dt_codes = [
        [(-14, -46, -40, -28, -60, -70), (-32, -34, -38, -4, -52, -50, -48), (-44, -42, -64, -2, -16, -58), (-56, -54, -8), (-36, -26, -24, -22, -20, -6, -18), (-10, -66), (-72, -30, -62), (-12, -68)],
        [(-14, -46, -40, -28, -60, -70), (-36, -34, -30, -4, -52, -50, -48), (-42, -44, -58, -16, -2, -64), (-56, -54, -8), (-32, -26, -24, -22, -20, -6, -18), (-10, -66), (-72, -38, -62), (-12, -68)],
        [(14, 70, 64, 50, 36, 24), (18, 2), (26, 16, 72), (46, 44, 22, 6, 48, 54), (52, 62, 60, 58, 56, 12, 34), (68, 66, 32, 10, 42, 40, 38), (28, 30, 8), (20, 4)],
        [(-14, -46, -40, -28, -60, -70), (-32, -34, -38, -4, -52, -50, -48), (-44, -42, -64, -2, -16, -58), (-56, -54, -8), (-36, -26, -24, -22, -20, -6, -18), (-10, -68), (-30, -72, -62), (-12, -66)],
        [(14, 70, 64, 50, 36, 24), (2, 18), (34, 16, 72), (42, 40, 54, 38, 6, 22), (62, 52, 26, 12, 56, 58, 60), (68, 66, 28, 10, 44, 46, 48), (32, 30, 8), (20, 4)],
        [(-14, -46, -40, -28, -60, -70), (-34, -36, -58, -56, -54, -4, -30), (-42, -44, -48, -26, -2, -64), (-50, -52, -8), (-16, -32, -24, -6, -22, -20, -18), (-68, -10), (-38, -72, -62), (-66, -12)],
        [(-14, -46, -40, -28, -60, -70), (-34, -36, -58, -56, -54, -4, -30), (-42, -44, -48, -26, -2, -64), (-50, -52, -8), (-16, -32, -24, -6, -22, -20, -18), (-10, -66), (-72, -38, -62), (-68, -12)],
        [(14, 70, 64, 50, 36, 24), (2, 18), (16, 34, 72), (42, 40, 54, 38, 6, 20), (62, 52, 26, 12, 56, 58, 60), (68, 66, 28, 10, 44, 46, 48), (32, 30, 8), (4, 22)],
        [(-14, -46, -40, -28, -60, -70), (-32, -34, -38, -4, -52, -50, -48), (-44, -42, -64, -2, -16, -58), (-56, -54, -8), (-36, -26, -24, -22, -20, -6, -18), (-66, -10), (-72, -30, -62), (-68, -12)]
        ]

    # Get complement for each dt_code and complement with opposite orientation
    # for each dt_code
    mfds = [ snappy.Manifold('DT%s' % dt_code) for dt_code in (dt_codes + dt_codes) ]
    for mfd in mfds[:len(dt_codes)]:
        mfd.reverse_orientation()

    isometry_signatures = [ mfd.isometry_signature(of_link = True)
                            for mfd in mfds ]

    # All the links only differ in orientation of complement or components,
    # should get the same isometry_signature
    assert len(set(isometry_signatures)) == 1
        
    M = snappy.Manifold(isometry_signatures[0])
    N = snappy.Manifold(M.isometry_signature(of_link = True))

    # Instantiating a manifold from its decorated isometry_signature should
    # eventually yield to a fixed point
    assert same_peripheral_curves(M, N)
     
    # More sanity checks
    assert isometry_signatures[0] == M.isometry_signature(of_link = True)
    assert isometry_signatures[0] == N.isometry_signature(of_link = True)

    for mfd in mfds:
        assert mfd.is_isometric_to(M, True)[0].extends_to_link()
        assert mfd.is_isometric_to(N, True)[0].extends_to_link()
    
    print("Tested that decorated isometry_signature is a link invariant")
Exemplo n.º 20
0
    def splitting(self,
                  gluing,
                  handles,
                  name=None,
                  optimize=True,
                  warnings=True,
                  debugging_level=0,
                  return_type='manifold'):
        ''' Generate a manifold with Heegaard splitting this surface from mapping class group data using the Twister
        program of Bell, Hall and Schleimer.
        
        Arguments:
        Required:
         gluing - the gluing used to join the upper and lower compression bodies
         handles - where to attach 2-handles
        Optional:
         name - name of the resulting manifold
         optimize - try to reduce the number of tetrahedra (default True)
         warnings - print Twister warnings (default True)
         debugging_level - specifies the amount of debugging information to be shown (default 0)
         return_type - specifies how to return the manifold, either as a 'manifold' (default), 'triangulation' or 'string'
        
        Gluing is a word of annulus and rectangle names (or
        their inverses).  These are read from left to right and determine a
        sequence of (half) Dehn twists.  When prefixed with an "!" the name
        specifies a drilling.  For example, "a*B*a*B*A*A*!a*!b" will perform 6
        twists and then drill twice.
        
        Handles is again a word of annulus names (or inverses).  For example,
        'a*c*A' means attach three 2-handles, two above and one below.
        
        Examples:
        
        The genus two splitting of the solid torus:
        >>> M = twister.Surface('S_2').splitting(gluing='', handles='a*B*c') '''

        if name is None: name = gluing + ' ' + handles
        tri, messages = build_splitting(name, self.surface_contents, gluing,
                                        handles, optimize, True, warnings,
                                        debugging_level)

        # You might want to change what is done with any warning / error messages.
        # Perhaps they should be returned in the next block?
        if messages != '': print(messages)

        if tri is None:
            return None

        return_type = return_type.lower()
        if return_type == 'manifold':
            return snappy.Manifold(tri)
        if return_type == 'triangulation':
            return snappy.Triangulation(tri)
        if return_type == 'string':
            return tri

        raise TypeError(
            'Return type must be \'manifold\', \'triangulation\' or \'string\'.'
        )
Exemplo n.º 21
0
def signature(name):
    M = snappy.Manifold(name)
    N = snappy.HTLinkExteriors.identify(M)
    if N:
        K = N.link()
        E = K.exterior()
        sign = 1 if orientation_pres_isometric(M, E) else -1
        return sign * K.signature()
Exemplo n.º 22
0
    def bundle(self,
               monodromy,
               name=None,
               optimize=True,
               warnings=True,
               debugging_level=0,
               return_type='manifold'):
        ''' Generate a surface bundle over a circle with fibre this surface from mapping class group data using the Twister
        program of Bell, Hall and Schleimer.
        
        Arguments:
        Required:
         monodromy - build a surface bundle with specified monodromy
        Optional:
         name - name of the resulting manifold
         optimize - try to reduce the number of tetrahedra (default True)
         warnings - print Twister warnings (default True)
         debugging_level - specifies the amount of debugging information to be shown (default 0)
         return_type - specifies how to return the manifold, either as a 'manifold' (default), 'triangulation' or 'string'
        
        Monodromy is a word of annulus and rectangle names (or
        their inverses).  These are read from left to right and determine a
        sequence of (half) Dehn twists.  When prefixed with an "!" the name
        specifies a drilling.  For example, "a*B*a*B*A*A*!a*!b" will perform 6
        twists and then drill twice.
        
        Examples:
        
        The figure eight knot complement:
        >>> M = twister.Surface((1,1)).bundle(monodromy='a_0*B1')
        
        The minimally twisted six chain link:
        >>> M = twister.Surface('S_1_1').bundles(monodromy='!a*!b*!a*!b*!a*!b')
        >>> M.set_peripheral_curves('shortest_meridians', 0)
        >>> M.dehn_fill((1,0),0) '''

        if name is None: name = monodromy
        tri, messages = build_bundle(name, self.surface_contents, monodromy,
                                     optimize, True, warnings, debugging_level)

        # You might want to change what is done with any warning / error messages.
        # Perhaps they should be returned in the next block?
        if messages != '': print(messages)

        if tri is None:
            return None

        return_type = return_type.lower()
        if return_type == 'manifold':
            return snappy.Manifold(tri)
        if return_type == 'triangulation':
            return snappy.Triangulation(tri)
        if return_type == 'string':
            return tri

        raise TypeError(
            'Return type must be \'manifold\', \'triangulation\' or \'string\'.'
        )
Exemplo n.º 23
0
def children(manifold):
    M = snappy.Manifold(manifold)
    for cusp_num in range(M.num_cusps()):
        kids = (interesting_fillings(manifold, cusp_num))
        for name in inquire_list:
            if name in kids:
                print str(name) + ' is ' + str(
                    kids[name]
                ) + ' surgery on ' + manifold + ' cusp number ' + str(cusp_num)
Exemplo n.º 24
0
def petaluma_complement(P):
    N = len(P)
    B = [(-1)**int(P[i * 2 % N] < P[(i + j) * 2 % N]) * j for i in range(N)
         for j in range(1, N / 2)]
    M = snappy.Manifold('Braid' + str(B))
    M.dehn_fill((1, 0), 1)
    M = M.filled_triangulation()
    # print M.cusp_info()
    return M
Exemplo n.º 25
0
def alexander(task):
    M = snappy.Manifold(task['name'])
    p = M.alexander_polynomial()
    task['alex'] = repr(p)
    task['alex_deg'] = p.degree()
    task['alex_monic'] = p.is_monic()
    uniroots = unimodular_roots(p)
    task['num_uniroots'] = len(uniroots)
    task['num_mult_uniroots'] = len([z for z, e in uniroots if e > 1])
    task['done'] = True
Exemplo n.º 26
0
def test_DT(dt, M2=None):
    if M2 is None:
        M2 = snappy.Manifold()
    dtc = spherogram.DTcodec(dt)
    L = dtc.link()
    M0, M1 = dtc.exterior(), L.exterior()
    L.view(M2.LE)
    #M2.LE.sorted_components()
    M2.LE.callback()
    return manifolds_match(M0, M1) and manifolds_match(M1, M2)
Exemplo n.º 27
0
def all_isosigs(M, decorated=True):
    """
    Starting with a Manifold from database, find all possible starting
    tetrahedra and labelings of that tetrahedron that results in an isosig
    giving the exact same triangulation (i.e. _gluing_data) as the original
    when constructed by snappy.Manifold
    """
    s = M.name()
    original_gluing_data = M._gluing_data()
    seen_isosigs = set()
    for i in range(M.num_tetrahedra()):
        for j in range(24):
            isosig = snappy.Manifold(s)._permutation_isosig(
                i, j, decorated=decorated)
            if isosig not in seen_isosigs:
                if snappy.Manifold(
                        isosig)._gluing_data() == original_gluing_data:
                    yield isosig
                seen_isosigs.add(isosig)
Exemplo n.º 28
0
def parabolic_psl2R_details(task, pari_prec=15):
    M = snappy.Manifold(task['name'])
    reps = real_parabolic_reps_from_ptolemy(M, pari_prec)
    ans = []
    for rho in reps:
        ans.append((longitude_translation(rho), rho.is_galois_conj_of_geom))
    ans.sort()
    task['parabolic_PSL2R_details'] = repr(ans)
    task['done'] = True
    return task
Exemplo n.º 29
0
def test(manifold_with_DT, plink_manifold=None):
    L = link_from_manifold(manifold_with_DT)
    PM = plink_manifold
    if PM is None:
        PM = snappy.Manifold()
    PM.LE.load_from_spherogram(L, None, False)
    PM.LE.callback()
    if appears_hyperbolic(PM):
        assert abs(manifold_with_DT.volume() - PM.volume()) < 0.000001
        assert manifold_with_DT.is_isometric_to(PM)
Exemplo n.º 30
0
def basic(task):
    M = snappy.Manifold(task['name'])
    task['volume'] = M.volume()
    task['tets'] = M.num_tetrahedra()
    M.dehn_fill((1, 0))
    if M.fundamental_group().num_generators() == 0:
        task['inS3'] = True
    else:
        task['inS3'] = False
    task['done'] = True