Exemplo n.º 1
0
    def from_path(cls, path):
        """Load a :class:`ProbabilisticIntentParser` instance from a path

        The data at the given path must have been generated using
        :func:`~ProbabilisticIntentParser.persist`
        """
        path = Path(path)
        model_path = path / "intent_parser.json"
        if not model_path.exists():
            raise OSError("Missing probabilistic intent parser model file: "
                          "%s" % model_path.name)

        with model_path.open() as f:
            model = json.load(f)

        parser = cls(config=cls.config_type.from_dict(model["config"]))
        classifier = None
        intent_classifier_path = path / "intent_classifier"
        if intent_classifier_path.exists():
            classifier = load_processing_unit(intent_classifier_path)

        slot_fillers = dict()
        for slot_filler_conf in model["slot_fillers"]:
            intent = slot_filler_conf["intent"]
            slot_filler_path = path / slot_filler_conf["slot_filler_name"]
            slot_filler = load_processing_unit(slot_filler_path)
            slot_fillers[intent] = slot_filler

        parser.intent_classifier = classifier
        parser.slot_fillers = slot_fillers
        return parser
Exemplo n.º 2
0
    def from_dict(cls, unit_dict):
        """Creates a :class:`SnipsNLUEngine` instance from a dict

        The dict must have been generated with :func:`~SnipsNLUEngine.to_dict`

        Raises:
            ValueError: When there is a mismatch with the model version
        """
        model_version = unit_dict.get("model_version")
        if model_version is None or model_version != __model_version__:
            raise ValueError(
                "Incompatible data model: persisted object=%s, python lib=%s" %
                (model_version, __model_version__))
        dataset_metadata = unit_dict["dataset_metadata"]
        if dataset_metadata is not None:
            load_resources(dataset_metadata["language_code"])
        nlu_engine = cls(config=unit_dict["config"])
        # pylint:disable=protected-access
        nlu_engine._dataset_metadata = dataset_metadata
        # pylint:enable=protected-access
        nlu_engine.intent_parsers = [
            load_processing_unit(parser_dict)
            for parser_dict in unit_dict["intent_parsers"]
        ]

        return nlu_engine
Exemplo n.º 3
0
    def from_dict(cls, unit_dict):
        """Creates a :class:`ProbabilisticIntentParser` instance from a dict

        The dict must have been generated with
        :func:`~ProbabilisticIntentParser.to_dict`
        """
        slot_fillers = {
            intent: load_processing_unit(slot_filler_dict) for
            intent, slot_filler_dict in
            iteritems(unit_dict["slot_fillers"])}
        classifier = None
        if unit_dict["intent_classifier"] is not None:
            classifier = load_processing_unit(unit_dict["intent_classifier"])

        parser = cls(config=cls.config_type.from_dict(unit_dict["config"]))
        parser.intent_classifier = classifier
        parser.slot_fillers = slot_fillers
        return parser
Exemplo n.º 4
0
    def from_path(cls, path, **shared):
        """Load a :class:`SnipsNLUEngine` instance from a directory path

        The data at the given path must have been generated using
        :func:`~SnipsNLUEngine.persist`

        Args:
            path (str): The path where the nlu engine is
                stored.
        """
        directory_path = Path(path)
        model_path = directory_path / "nlu_engine.json"
        if not model_path.exists():
            raise OSError("Missing nlu engine model file: %s" %
                          model_path.name)

        with model_path.open(encoding="utf8") as f:
            model = json.load(f)
        model_version = model.get("model_version")
        if model_version is None or model_version != __model_version__:
            raise ValueError(
                "Incompatible data model: persisted object=%s, python lib=%s" %
                (model_version, __model_version__))

        dataset_metadata = model["dataset_metadata"]
        if dataset_metadata is not None:
            language = dataset_metadata["language_code"]
            resources_dir = directory_path / "resources" / language
            if resources_dir.is_dir():
                load_resources_from_dir(resources_dir)

        if shared.get(BUILTIN_ENTITY_PARSER) is None:
            path = model["builtin_entity_parser"]
            if path is not None:
                parser_path = directory_path / path
                shared[BUILTIN_ENTITY_PARSER] = BuiltinEntityParser.from_path(
                    parser_path)

        if shared.get(CUSTOM_ENTITY_PARSER) is None:
            path = model["custom_entity_parser"]
            if path is not None:
                parser_path = directory_path / path
                shared[CUSTOM_ENTITY_PARSER] = CustomEntityParser.from_path(
                    parser_path)

        nlu_engine = cls(config=model["config"], **shared)

        # pylint:disable=protected-access
        nlu_engine._dataset_metadata = dataset_metadata
        # pylint:enable=protected-access
        intent_parsers = []
        for intent_parser_name in model["intent_parsers"]:
            intent_parser_path = directory_path / intent_parser_name
            intent_parser = load_processing_unit(intent_parser_path, **shared)
            intent_parsers.append(intent_parser)
        nlu_engine.intent_parsers = intent_parsers
        return nlu_engine
Exemplo n.º 5
0
    def from_path(cls, path):
        """Load a :class:`SnipsNLUEngine` instance from a directory path

        The data at the given path must have been generated using
        :func:`~SnipsNLUEngine.persist`

        Args:
            path (str): The path where the nlu engine is stored.
        """
        directory_path = Path(path)
        model_path = directory_path / "nlu_engine.json"
        if not model_path.exists():
            raise OSError("Missing nlu engine model file: %s" %
                          model_path.name)

        with model_path.open() as f:
            model = json.load(f)
        model_version = model.get("model_version")
        if model_version is None or model_version != __model_version__:
            raise ValueError(
                "Incompatible data model: persisted object=%s, python lib=%s" %
                (model_version, __model_version__))

        resources_dir = (directory_path / "resources")
        if resources_dir.is_dir():
            for subdir in resources_dir.iterdir():
                load_resources_from_dir(subdir)

        nlu_engine = cls(config=model["config"])
        # pylint:disable=protected-access
        nlu_engine._dataset_metadata = model["dataset_metadata"]
        # pylint:enable=protected-access
        intent_parsers = []
        for intent_parser_name in model["intent_parsers"]:
            intent_parser_path = directory_path / intent_parser_name
            intent_parser = load_processing_unit(intent_parser_path)
            intent_parsers.append(intent_parser)
        nlu_engine.intent_parsers = intent_parsers
        return nlu_engine
Exemplo n.º 6
0
    def from_dict(cls, unit_dict):
        """Creates a :class:`SnipsNLUEngine` instance from a dict

        The dict must have been generated with :func:`~SnipsNLUEngine.to_dict`

        Raises:
            ValueError: When there is a mismatch with the model version
        """
        model_version = unit_dict.get("model_version")
        if model_version is None or model_version != __model_version__:
            raise ValueError(
                "Incompatible data model: persisted object=%s, python lib=%s"
                % (model_version, __model_version__))

        nlu_engine = cls(config=unit_dict["config"])
        # pylint:disable=protected-access
        nlu_engine._dataset_metadata = unit_dict["dataset_metadata"]
        # pylint:enable=protected-access
        nlu_engine.intent_parsers = [
            load_processing_unit(parser_dict)
            for parser_dict in unit_dict["intent_parsers"]]

        return nlu_engine