Exemplo n.º 1
0
    .limit(10)
    .offset(0)
)
sv = SentenceNgramViewer(candidates, session)


# In[ ]:


sv


# In[ ]:


c = sv.get_selected()
c


# ## Bicluster Dataframe formation

# In[ ]:


url = "https://zenodo.org/record/1035500/files/"
dep_path = "part-ii-dependency-paths-chemical-disease-sorted-with-themes.txt"
file_dist = "part-i-chemical-disease-path-theme-distributions.txt"
output_file = "data/compound_disease/biclustering/compound_disease_bicluster_results.tsv"


# In[ ]:
Exemplo n.º 2
0
# NOTE: This if-then statement is only to avoid opening the viewer during automated testing of this notebook
# You should ignore this!
import os
if 'CI' not in os.environ:
    sv = SentenceNgramViewer(indep_results['CG_ALL'][1], session)
else:
    sv = None

# In[ ]:

sv

# In[ ]:

c = sv.get_selected() if sv else list(fp.union(fn))[0]
c

# In[ ]:

c.labels

# In[ ]:

train_hand_marginals_indep_df.iloc[L_train_labeled.get_row_index(c)]

# ## Write Marginals of best model to File for Next Notebook

# Lastly we write out the generative model's output into a file. Reason for this will be used in the [next notebook](4.sentence-level-prediction.ipynb), where we aim to use a noise aware discriminator model to correct for the generative models' errors.

# In[ ]: