Exemplo n.º 1
0
def main():
    fix_random_seed(42)

    exp_dir = 'exp-lstm-adam'
    setup_logger('{}/log/log-train'.format(exp_dir))
    tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    word_symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')

    logging.info("Loading L.fst")
    if (lang_dir / 'Linv.pt').exists():
        L_inv = k2.Fsa.from_dict(torch.load(lang_dir / 'Linv.pt'))
    else:
        with open(lang_dir / 'L.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_inv = k2.arc_sort(L.invert_())
            torch.save(L_inv.as_dict(), lang_dir / 'Linv.pt')

    graph_compiler = CtcTrainingGraphCompiler(L_inv=L_inv,
                                              phones=phone_symbol_table,
                                              words=word_symbol_table,
                                              oov='<SPOKEN_NOISE>')

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = CutSet.from_json(feature_dir / 'cuts_train.json.gz')
    logging.info("About to get dev cuts")
    cuts_dev = CutSet.from_json(feature_dir / 'cuts_dev.json.gz')

    logging.info("About to create train dataset")
    train = K2SpeechRecognitionIterableDataset(cuts_train,
                                               max_frames=90000,
                                               shuffle=True)
    logging.info("About to create dev dataset")
    validate = K2SpeechRecognitionIterableDataset(cuts_dev,
                                                  max_frames=90000,
                                                  shuffle=False,
                                                  concat_cuts=False)
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(train,
                                           batch_size=None,
                                           num_workers=4)
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(validate,
                                           batch_size=None,
                                           num_workers=1)

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")
    device_id = 0
    device = torch.device('cuda', device_id)
    model = TdnnLstm1b(num_features=40,
                       num_classes=len(phone_symbol_table),
                       subsampling_factor=3)

    learning_rate = 0.00001
    start_epoch = 0
    num_epochs = 10
    best_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only
    global_batch_idx_valid = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        (epoch, learning_rate, objf) = load_checkpoint(filename=model_path,
                                                       model=model)
        best_objf = objf
        logging.info("epoch = {}, objf = {}".format(epoch, objf))

    model.to(device)
    describe(model)

    # optimizer = optim.SGD(model.parameters(),
    #                       lr=learning_rate,
    #                       momentum=0.9,
    #                       weight_decay=5e-4)
    optimizer = optim.AdamW(
        model.parameters(),
        # lr=learning_rate,
        weight_decay=5e-4)

    for epoch in range(start_epoch, num_epochs):
        curr_learning_rate = 1e-3
        # curr_learning_rate = learning_rate * pow(0.4, epoch)
        # for param_group in optimizer.param_groups:
        #     param_group['lr'] = curr_learning_rate

        tb_writer.add_scalar('learning_rate', curr_learning_rate, epoch)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf = train_one_epoch(dataloader=train_dl,
                               valid_dataloader=valid_dl,
                               model=model,
                               device=device,
                               graph_compiler=graph_compiler,
                               optimizer=optimizer,
                               current_epoch=epoch,
                               tb_writer=tb_writer,
                               num_epochs=num_epochs,
                               global_batch_idx_train=global_batch_idx_train,
                               global_batch_idx_valid=global_batch_idx_valid)
        # the lower, the better
        if objf < best_objf:
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=best_objf,
                               best_objf=best_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           best_epoch=best_epoch)

    logging.warning('Done')
Exemplo n.º 2
0
def main():
    exp_dir = Path('exp-lstm-adam-mmi-mbr-musan')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')

    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')
    model = TdnnLstm1b(
        num_features=40,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)
    model.P_scores = torch.nn.Parameter(P.scores.clone(), requires_grad=False)

    checkpoint = os.path.join(exp_dir, 'epoch-9.pt')
    load_checkpoint(checkpoint, model)
    model.to(device)
    model.eval()

    assert P.requires_grad is False
    P.scores = model.P_scores.cpu()
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='model_P_scores.txt')

    P.set_scores_stochastic_(model.P_scores)
    print_transition_probabilities(P,
                                   phone_symbol_table,
                                   phone_ids,
                                   filename='P_scores.txt')

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled HLG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    # load dataset
    feature_dir = Path('exp/data')
    logging.debug("About to get test cuts")
    cuts_test = CutSet.from_json(feature_dir / 'cuts_test-clean.json.gz')

    logging.info("About to create test dataset")
    test = K2SpeechRecognitionDataset(cuts_test)
    sampler = SingleCutSampler(cuts_test, max_frames=100000)
    logging.info("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test,
                                          batch_size=None,
                                          sampler=sampler,
                                          num_workers=1)

    #  if not torch.cuda.is_available():
    #  logging.error('No GPU detected!')
    #  sys.exit(-1)

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)
    logging.debug("About to decode")
    results = decode(dataloader=test_dl,
                     model=model,
                     device=device,
                     HLG=HLG,
                     symbols=symbol_table)
    s = ''
    for ref, hyp in results:
        s += f'ref={ref}\n'
        s += f'hyp={hyp}\n'
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ['sub', 'ins', 'del', 'total']
    }
    total_words = sum(len(ref) for ref, _ in results)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
Exemplo n.º 3
0
def main():
    exp_dir = Path("exp-lstm-adam-ctc-musan")
    setup_logger("{}/log/log-decode".format(exp_dir), log_level="debug")

    # load L, G, symbol_table
    lang_dir = Path("data/lang_nosp")
    symbol_table = k2.SymbolTable.from_file(lang_dir / "words.txt")
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / "phones.txt")
    phone_ids = get_phone_symbols(phone_symbol_table)
    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    if not os.path.exists(lang_dir / "HLG.pt"):
        print("Loading L_disambig.fst.txt")
        with open(lang_dir / "L_disambig.fst.txt") as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        print("Loading G.fst.txt")
        with open(lang_dir / "G.fst.txt") as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        HLG = compile_HLG(
            L=L,
            G=G,
            H=ctc_topo,
            labels_disambig_id_start=first_phone_disambig_id,
            aux_labels_disambig_id_start=first_word_disambig_id,
        )
        torch.save(HLG.as_dict(), lang_dir / "HLG.pt")
    else:
        print("Loading pre-compiled HLG")
        d = torch.load(lang_dir / "HLG.pt")
        HLG = k2.Fsa.from_dict(d)

    # load dataset
    feature_dir = Path("exp/data")
    print("About to get test cuts")
    cuts_test = CutSet.from_file(feature_dir / "gigaspeech_cuts_TEST.jsonl.gz")

    print("About to create test dataset")
    test = K2SpeechRecognitionDataset(cuts_test)
    sampler = SingleCutSampler(cuts_test, max_frames=100000)
    print("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test,
                                          batch_size=None,
                                          sampler=sampler,
                                          num_workers=1)

    #  if not torch.cuda.is_available():
    #  logging.error('No GPU detected!')
    #  sys.exit(-1)

    print("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device("cuda")
    model = TdnnLstm1b(
        num_features=80,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=4,
    )

    checkpoint = os.path.join(exp_dir, "epoch-7.pt")
    load_checkpoint(checkpoint, model)
    model.to(device)
    model.eval()

    print("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)
    print("About to decode")
    results = decode(dataloader=test_dl,
                     model=model,
                     device=device,
                     HLG=HLG,
                     symbols=symbol_table)
    s = ""
    for ref, hyp in results:
        s += f"ref={ref}\n"
        s += f"hyp={hyp}\n"
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ["sub", "ins", "del", "total"]
    }
    total_words = sum(len(ref) for ref, _ in results)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
Exemplo n.º 4
0
def main():
    fix_random_seed(42)

    start_epoch = 0
    num_epochs = 8

    exp_dir = 'exp-lstm-adam-ctc-musan'
    setup_logger('{}/log/log-train'.format(exp_dir))
    tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    word_symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')

    logging.info("Loading L.fst")
    if (lang_dir / 'Linv.pt').exists():
        L_inv = k2.Fsa.from_dict(torch.load(lang_dir / 'Linv.pt'))
    else:
        with open(lang_dir / 'L.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_inv = k2.arc_sort(L.invert_())
            torch.save(L_inv.as_dict(), lang_dir / 'Linv.pt')

    graph_compiler = CtcTrainingGraphCompiler(
        L_inv=L_inv,
        phones=phone_symbol_table,
        words=word_symbol_table
    )
    phone_ids = get_phone_symbols(phone_symbol_table)

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = CutSet.from_json(feature_dir /
                                  'cuts_train-clean-100.json.gz')
    logging.info("About to get dev cuts")
    cuts_dev = CutSet.from_json(feature_dir / 'cuts_dev-clean.json.gz')
    logging.info("About to get Musan cuts")
    cuts_musan = CutSet.from_json(feature_dir / 'cuts_musan.json.gz')

    logging.info("About to create train dataset")
    train = K2SpeechRecognitionDataset(
        cuts_train,
        cut_transforms=[
            CutConcatenate(),
            CutMix(
                cuts=cuts_musan,
                prob=0.5,
                snr=(10, 20)
            )
        ]
    )
    train_sampler = SingleCutSampler(
        cuts_train,
        max_frames=90000,
        shuffle=True,
    )
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(
        train,
        sampler=train_sampler,
        batch_size=None,
        num_workers=4
    )
    logging.info("About to create dev dataset")
    validate = K2SpeechRecognitionDataset(cuts_dev)
    valid_sampler = SingleCutSampler(cuts_dev, max_frames=90000)
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(
        validate,
        sampler=valid_sampler,
        batch_size=None,
        num_workers=1
    )

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")
    device_id = 0
    device = torch.device('cuda', device_id)
    model = TdnnLstm1b(
        num_features=40,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)
    
    model.to(device)
    describe(model)

    learning_rate = 1e-3
    optimizer = optim.AdamW(model.parameters(),
                            lr=learning_rate,
                            weight_decay=5e-4)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path, model=model, optimizer=optimizer)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}")

    for epoch in range(start_epoch, num_epochs):
        train_sampler.set_epoch(epoch)
        curr_learning_rate = 1e-3
        # curr_learning_rate = learning_rate * pow(0.4, epoch)
        # for param_group in optimizer.param_groups:
        #     param_group['lr'] = curr_learning_rate

        tb_writer.add_scalar('learning_rate', curr_learning_rate, epoch)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(dataloader=train_dl,
                                                                   valid_dataloader=valid_dl,
                                                                   model=model,
                                                                   device=device,
                                                                   graph_compiler=graph_compiler,
                                                                   optimizer=optimizer,
                                                                   current_epoch=epoch,
                                                                   tb_writer=tb_writer,
                                                                   num_epochs=num_epochs,
                                                                   global_batch_idx_train=global_batch_idx_train)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            model=model,
                            epoch=epoch,
                            optimizer=None,
                            scheduler=None,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=best_objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        model=model,
                        optimizer=optimizer,
                        scheduler=None,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch)

    logging.warning('Done')
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate

    fix_random_seed(42)
    setup_dist(rank, world_size, args.master_port)

    exp_dir = Path('exp-' + model_type + '-noam-mmi-att-musan-sa-vgg')
    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None
    #  tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard') if args.tensorboard and rank == 0 else None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)
    P = P.to(device)

    mls = MLSAsrDataModule(args)
    train_dl = mls.train_dataloaders()
    valid_dl = mls.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    model = DDP(model, device_ids=[rank])

    # Now for the aligment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    torch.distributed.barrier()
    cleanup_dist()
Exemplo n.º 6
0
def main():
    fix_random_seed(42)

    exp_dir = f'exp-lstm-adam-mmi-mbr-musan'
    setup_logger('{}/log/log-train'.format(exp_dir))
    tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')

    if not torch.cuda.is_available():
        logging.warn('No GPU detected!')
        logging.warn('USE CPU (very slow)!')
        device = torch.device('cpu')
    else:
        logging.info('Use GPU')
        device_id = 0
        device = torch.device('cuda', device_id)

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    word_symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')

    logging.info("Loading L.fst")
    if (lang_dir / 'Linv.pt').exists():
        logging.info('Loading precompiled L')
        L_inv = k2.Fsa.from_dict(torch.load(lang_dir / 'Linv.pt'))
    else:
        logging.info('Compiling L')
        with open(lang_dir / 'L.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_inv = k2.arc_sort(L.invert_())
            torch.save(L_inv.as_dict(), lang_dir / 'Linv.pt')

    logging.info("Loading L_disambig.fst")
    if (lang_dir / 'L_disambig.pt').exists():
        logging.info('Loading precompiled L_disambig')
        L_disambig = k2.Fsa.from_dict(torch.load(lang_dir / 'L_disambig.pt'))
    else:
        logging.info('Compiling L_disambig')
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L_disambig = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_disambig = k2.arc_sort(L_disambig)
            torch.save(L_disambig.as_dict(), lang_dir / 'L_disambig.pt')

    logging.info("Loading G.fst")
    if (lang_dir / 'G_uni.pt').exists():
        logging.info('Loading precompiled G')
        G = k2.Fsa.from_dict(torch.load(lang_dir / 'G_uni.pt'))
    else:
        logging.info('Compiling G')
        with open(lang_dir / 'G_uni.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
            G = k2.arc_sort(G)
            torch.save(G.as_dict(), lang_dir / 'G_uni.pt')

    graph_compiler = MmiMbrTrainingGraphCompiler(L_inv=L_inv,
                                                 L_disambig=L_disambig,
                                                 G=G,
                                                 device=device,
                                                 phones=phone_symbol_table,
                                                 words=word_symbol_table)
    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = CutSet.from_json(feature_dir / 'cuts_train-clean-100.json.gz')
    logging.info("About to get dev cuts")
    cuts_dev = CutSet.from_json(feature_dir / 'cuts_dev-clean.json.gz')
    logging.info("About to get Musan cuts")
    cuts_musan = CutSet.from_json(feature_dir / 'cuts_musan.json.gz')

    logging.info("About to create train dataset")
    train = K2SpeechRecognitionIterableDataset(cuts_train,
                                               max_frames=30000,
                                               shuffle=True,
                                               aug_cuts=cuts_musan,
                                               aug_prob=0.5,
                                               aug_snr=(10, 20))
    logging.info("About to create dev dataset")
    validate = K2SpeechRecognitionIterableDataset(cuts_dev,
                                                  max_frames=60000,
                                                  shuffle=False,
                                                  concat_cuts=False)
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(train,
                                           batch_size=None,
                                           num_workers=4)
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(validate,
                                           batch_size=None,
                                           num_workers=1)

    logging.info("About to create model")
    model = TdnnLstm1b(
        num_features=40,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)
    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    start_epoch = 0
    num_epochs = 10
    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only
    use_adam = True

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path, model=model)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    model.to(device)
    describe(model)

    P = P.to(device)

    if use_adam:
        learning_rate = 1e-3
        weight_decay = 5e-4
        optimizer = optim.AdamW(model.parameters(),
                                lr=learning_rate,
                                weight_decay=weight_decay)
        # Equivalent to the following in the epoch loop:
        #  if epoch > 6:
        #      curr_learning_rate *= 0.8
        lr_scheduler = optim.lr_scheduler.LambdaLR(
            optimizer, lambda ep: 1.0 if ep < 7 else 0.8**(ep - 6))
    else:
        learning_rate = 5e-5
        weight_decay = 1e-5
        momentum = 0.9
        lr_schedule_gamma = 0.7
        optimizer = optim.SGD(model.parameters(),
                              lr=learning_rate,
                              momentum=momentum,
                              weight_decay=weight_decay)
        lr_scheduler = optim.lr_scheduler.ExponentialLR(
            optimizer=optimizer,
            gamma=lr_schedule_gamma,
            last_epoch=start_epoch - 1)

    for epoch in range(start_epoch, num_epochs):
        # LR scheduler can hold multiple learning rates for multiple parameter groups;
        # For now we report just the first LR which we assume concerns most of the parameters.
        curr_learning_rate = lr_scheduler.get_last_lr()[0]
        tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                             global_batch_idx_train)
        tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
        )
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch)

        lr_scheduler.step()

    logging.warning('Done')
def run(rank, world_size, args):
    '''
    Args:
      rank:
        It is a value between 0 and `world_size-1`, which is
        passed automatically by `mp.spawn()` in :func:`main`.
        The node with rank 0 is responsible for saving checkpoint.
      world_size:
        Number of GPUs for DDP training.
      args:
        The return value of get_parser().parse_args()
    '''
    model_type = args.model_type
    start_epoch = args.start_epoch
    num_epochs = args.num_epochs
    accum_grad = args.accum_grad
    den_scale = args.den_scale
    att_rate = args.att_rate
    use_pruned_intersect = args.use_pruned_intersect

    fix_random_seed(42)
    if world_size > 1:
        setup_dist(rank, world_size, args.master_port)

    suffix = ''
    if args.context_window is not None and args.context_window > 0:
        suffix = f'ac{args.context_window}'
    giga_subset = f'giga{args.subset}'
    exp_dir = Path(
        f'exp-{model_type}-mmi-att-sa-vgg-normlayer-{giga_subset}-{suffix}')

    setup_logger(f'{exp_dir}/log/log-train-{rank}')
    if args.tensorboard and rank == 0:
        tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')
    else:
        tb_writer = None

    logging.info("Loading lexicon and symbol tables")
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = rank
    device = torch.device('cuda', device_id)

    if not Path(lang_dir / f'P_{args.subset}.pt').is_file():
        logging.debug(f'Loading P from {lang_dir}/P_{args.subset}.fst.txt')
        with open(lang_dir / f'P_{args.subset}.fst.txt') as f:
            # P is not an acceptor because there is
            # a back-off state, whose incoming arcs
            # have label #0 and aux_label eps.
            P = k2.Fsa.from_openfst(f.read(), acceptor=False)

        phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)

        # P.aux_labels is not needed in later computations, so
        # remove it here.
        del P.aux_labels
        # CAUTION(fangjun): The following line is crucial.
        # Arcs entering the back-off state have label equal to #0.
        # We have to change it to 0 here.
        P.labels[P.labels >= first_phone_disambig_id] = 0

        P = k2.remove_epsilon(P)
        P = k2.arc_sort(P)
        torch.save(P.as_dict(), lang_dir / f'P_{args.subset}.pt')
    else:
        logging.debug('Loading pre-compiled P')
        d = torch.load(lang_dir / f'P_{args.subset}.pt')
        P = k2.Fsa.from_dict(d)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        P=P,
        device=device,
    )
    phone_ids = lexicon.phone_symbols()

    gigaspeech = GigaSpeechAsrDataModule(args)
    train_dl = gigaspeech.train_dataloaders()
    valid_dl = gigaspeech.valid_dataloaders()

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    if use_pruned_intersect:
        logging.info('Use pruned intersect for den_lats')
    else:
        logging.info("Don't use pruned intersect for den_lats")

    logging.info("About to create model")

    if att_rate != 0.0:
        num_decoder_layers = 6
    else:
        num_decoder_layers = 0

    if model_type == "transformer":
        model = Transformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True)
    elif model_type == "conformer":
        model = Conformer(
            num_features=80,
            nhead=args.nhead,
            d_model=args.attention_dim,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4,
            num_decoder_layers=num_decoder_layers,
            vgg_frontend=True,
            is_espnet_structure=True)
    elif model_type == "contextnet":
        model = ContextNet(num_features=80, num_classes=len(phone_ids) +
                           1)  # +1 for the blank symbol
    else:
        raise NotImplementedError("Model of type " + str(model_type) +
                                  " is not implemented")

    if args.torchscript:
        logging.info('Applying TorchScript to model...')
        model = torch.jit.script(model)

    model.to(device)
    describe(model)

    if world_size > 1:
        model = DDP(model, device_ids=[rank])

    # Now for the alignment model, if any
    if args.use_ali_model:
        ali_model = TdnnLstm1b(
            num_features=80,
            num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
            subsampling_factor=4)

        ali_model_fname = Path(
            f'exp-lstm-adam-ctc-musan/epoch-{args.ali_model_epoch}.pt')
        assert ali_model_fname.is_file(), \
                f'ali model filename {ali_model_fname} does not exist!'
        ali_model.load_state_dict(
            torch.load(ali_model_fname, map_location='cpu')['state_dict'])
        ali_model.to(device)

        ali_model.eval()
        ali_model.requires_grad_(False)
        logging.info(f'Use ali_model: {ali_model_fname}')
    else:
        ali_model = None
        logging.info('No ali_model')

    optimizer = Noam(model.parameters(),
                     model_size=args.attention_dim,
                     factor=args.lr_factor,
                     warm_step=args.warm_step,
                     weight_decay=args.weight_decay)

    scaler = GradScaler(enabled=args.amp)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scaler=scaler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_dl.sampler.set_epoch(epoch)
        curr_learning_rate = optimizer._rate
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            ali_model=ali_model,
            device=device,
            graph_compiler=graph_compiler,
            use_pruned_intersect=use_pruned_intersect,
            optimizer=optimizer,
            accum_grad=accum_grad,
            den_scale=den_scale,
            att_rate=att_rate,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
            world_size=world_size,
            scaler=scaler)
        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            optimizer=None,
                            scheduler=None,
                            scaler=None,
                            model=model,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train,
                            local_rank=rank,
                            torchscript=args.torchscript_epoch != -1
                            and epoch >= args.torchscript_epoch)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch,
                               local_rank=rank)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        optimizer=optimizer,
                        scheduler=None,
                        scaler=scaler,
                        model=model,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train,
                        local_rank=rank,
                        torchscript=args.torchscript_epoch != -1
                        and epoch >= args.torchscript_epoch)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch,
                           local_rank=rank)

    logging.warning('Done')
    if world_size > 1:
        torch.distributed.barrier()
        cleanup_dist()
Exemplo n.º 8
0
def main():
    args = get_parser().parse_args()
    print('World size:', args.world_size, 'Rank:', args.local_rank)
    setup_dist(rank=args.local_rank, world_size=args.world_size)
    fix_random_seed(42)

    start_epoch = 0
    num_epochs = 10
    use_adam = True

    exp_dir = f'exp-lstm-adam-mmi-bigram-musan-dist'
    setup_logger('{}/log/log-train'.format(exp_dir),
                 use_console=args.local_rank == 0)
    tb_writer = SummaryWriter(
        log_dir=f'{exp_dir}/tensorboard') if args.local_rank == 0 else None

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    word_symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')

    logging.info("Loading L.fst")
    if (lang_dir / 'Linv.pt').exists():
        L_inv = k2.Fsa.from_dict(torch.load(lang_dir / 'Linv.pt'))
    else:
        with open(lang_dir / 'L.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
            L_inv = k2.arc_sort(L.invert_())
            torch.save(L_inv.as_dict(), lang_dir / 'Linv.pt')

    graph_compiler = MmiTrainingGraphCompiler(L_inv=L_inv,
                                              phones=phone_symbol_table,
                                              words=word_symbol_table)
    phone_ids = get_phone_symbols(phone_symbol_table)
    P = create_bigram_phone_lm(phone_ids)
    P.scores = torch.zeros_like(P.scores)

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = CutSet.from_json(feature_dir / 'cuts_train-clean-100.json.gz')
    logging.info("About to get dev cuts")
    cuts_dev = CutSet.from_json(feature_dir / 'cuts_dev-clean.json.gz')
    logging.info("About to get Musan cuts")
    cuts_musan = CutSet.from_json(feature_dir / 'cuts_musan.json.gz')

    logging.info("About to create train dataset")
    transforms = [CutMix(cuts=cuts_musan, prob=0.5, snr=(10, 20))]
    if not args.bucketing_sampler:
        # We don't mix concatenating the cuts and bucketing
        # Here we insert concatenation before mixing so that the
        # noises from Musan are mixed onto almost-zero-energy
        # padding frames.
        transforms = [CutConcatenate()] + transforms
    train = K2SpeechRecognitionDataset(cuts_train, cut_transforms=transforms)
    if args.bucketing_sampler:
        logging.info('Using BucketingSampler.')
        train_sampler = BucketingSampler(cuts_train,
                                         max_frames=40000,
                                         shuffle=True,
                                         num_buckets=30)
    else:
        logging.info('Using regular sampler with cut concatenation.')
        train_sampler = SingleCutSampler(
            cuts_train,
            max_frames=30000,
            shuffle=True,
        )
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(train,
                                           sampler=train_sampler,
                                           batch_size=None,
                                           num_workers=4)
    logging.info("About to create dev dataset")
    validate = K2SpeechRecognitionDataset(cuts_dev)
    # Note: we explicitly set world_size to 1 to disable the auto-detection of
    #       distributed training inside the sampler. This way, every GPU will
    #       perform the computation on the full dev set. It is a bit wasteful,
    #       but unfortunately loss aggregation between multiple processes with
    #       torch.distributed.all_reduce() tends to hang indefinitely inside
    #       NCCL after ~3000 steps. With the current approach, we can still report
    #       the loss on the full validation set.
    valid_sampler = SingleCutSampler(cuts_dev,
                                     max_frames=90000,
                                     world_size=1,
                                     rank=0)
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(validate,
                                           sampler=valid_sampler,
                                           batch_size=None,
                                           num_workers=1)

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")
    device_id = args.local_rank
    device = torch.device('cuda', device_id)
    model = TdnnLstm1b(
        num_features=40,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)
    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    if use_adam:
        learning_rate = 1e-3
        weight_decay = 5e-4
        optimizer = optim.AdamW(model.parameters(),
                                lr=learning_rate,
                                weight_decay=weight_decay)
        # Equivalent to the following in the epoch loop:
        #  if epoch > 6:
        #      curr_learning_rate *= 0.8
        lr_scheduler = optim.lr_scheduler.LambdaLR(
            optimizer, lambda ep: 1.0 if ep < 7 else 0.8**(ep - 6))
    else:
        learning_rate = 5e-5
        weight_decay = 1e-5
        momentum = 0.9
        lr_schedule_gamma = 0.7
        optimizer = optim.SGD(model.parameters(),
                              lr=learning_rate,
                              momentum=momentum,
                              weight_decay=weight_decay)
        lr_scheduler = optim.lr_scheduler.ExponentialLR(
            optimizer=optimizer, gamma=lr_schedule_gamma)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scheduler=lr_scheduler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    if args.world_size > 1:
        logging.info(
            'Using DistributedDataParallel in training. '
            'The reported loss, num_frames, etc. for training steps include '
            'only the batches seen in the master process (the actual loss '
            'includes batches from all GPUs, and the actual num_frames is '
            f'approx. {args.world_size}x larger.')
        # For now do not sync BatchNorm across GPUs due to NCCL hanging in all_gather...
        # model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
        model = DDP(model,
                    device_ids=[args.local_rank],
                    output_device=args.local_rank)

    for epoch in range(start_epoch, num_epochs):
        train_sampler.set_epoch(epoch)

        # LR scheduler can hold multiple learning rates for multiple parameter groups;
        # For now we report just the first LR which we assume concerns most of the parameters.
        curr_learning_rate = lr_scheduler.get_last_lr()[0]
        if tb_writer is not None:
            tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                                 global_batch_idx_train)
            tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            P=P,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
        )

        lr_scheduler.step()

        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            model=model,
                            optimizer=None,
                            scheduler=None,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            local_rank=args.local_rank,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        model=model,
                        optimizer=optimizer,
                        scheduler=lr_scheduler,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        local_rank=args.local_rank,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch)

    logging.warning('Done')
    cleanup_dist()
Exemplo n.º 9
0
def main():
    exp_dir = Path('exp-lstm-adam')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    symbol_table = k2.SymbolTable.from_file(lang_dir / 'words.txt')
    phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
    ctc_topo = build_ctc_topo(list(phone_symbol_table._id2sym.keys()))
    ctc_topo = k2.arc_sort(ctc_topo)

    if not os.path.exists(lang_dir / 'LG.pt'):
        print("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        print("Loading G.fsa.txt")
        with open(lang_dir / 'G.fsa.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=True)
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)
        first_word_disambig_id = find_first_disambig_symbol(symbol_table)
        LG = compile_LG(L=L,
                        G=G,
                        ctc_topo=ctc_topo,
                        labels_disambig_id_start=first_phone_disambig_id,
                        aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(LG.as_dict(), lang_dir / 'LG.pt')
    else:
        print("Loading pre-compiled LG")
        d = torch.load(lang_dir / 'LG.pt')
        LG = k2.Fsa.from_dict(d)

    # load dataset
    feature_dir = Path('exp/data')
    print("About to get test cuts")
    cuts_test = CutSet.from_json(feature_dir / 'cuts_test.json.gz')

    print("About to create test dataset")
    test = K2SpeechRecognitionIterableDataset(cuts_test,
                                              max_frames=100000,
                                              shuffle=False,
                                              concat_cuts=False)
    print("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test, batch_size=None, num_workers=1)

    #  if not torch.cuda.is_available():
    #  logging.error('No GPU detected!')
    #  sys.exit(-1)

    print("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')
    model = TdnnLstm1b(num_features=40, num_classes=len(phone_symbol_table))
    checkpoint = os.path.join(exp_dir, 'epoch-9.pt')
    load_checkpoint(checkpoint, model)
    model.to(device)
    model.eval()

    print("convert LG to device")
    LG = LG.to(device)
    LG.aux_labels = k2.ragged.remove_values_eq(LG.aux_labels, 0)
    LG.requires_grad_(False)
    print("About to decode")
    results = decode(dataloader=test_dl,
                     model=model,
                     device=device,
                     LG=LG,
                     symbols=symbol_table)
    s = ''
    results2 = []
    for ref, hyp in results:
        s += f'ref={ref}\n'
        s += f'hyp={hyp}\n'
        results2.append((list(''.join(ref)), list(''.join(hyp))))
    logging.info(s)
    # compute WER
    dists = [edit_distance(r, h) for r, h in results]
    dists2 = [edit_distance(r, h) for r, h in results2]
    errors = {
        key: sum(dist[key] for dist in dists)
        for key in ['sub', 'ins', 'del', 'total']
    }
    errors2 = {
        key: sum(dist[key] for dist in dists2)
        for key in ['sub', 'ins', 'del', 'total']
    }
    total_words = sum(len(ref) for ref, _ in results)
    total_chars = sum(len(ref) for ref, _ in results2)
    # Print Kaldi-like message:
    # %WER 8.20 [ 4459 / 54402, 695 ins, 427 del, 3337 sub ]
    logging.info(
        f'%WER {errors["total"] / total_words:.2%} '
        f'[{errors["total"]} / {total_words}, {errors["ins"]} ins, {errors["del"]} del, {errors["sub"]} sub ]'
    )
    logging.info(
        f'%WER {errors2["total"] / total_chars:.2%} '
        f'[{errors2["total"]} / {total_chars}, {errors2["ins"]} ins, {errors2["del"]} del, {errors2["sub"]} sub ]'
    )
Exemplo n.º 10
0
def main():
    args = get_parser().parse_args()
    print('World size:', args.world_size, 'Rank:', args.local_rank)
    setup_dist(rank=args.local_rank,
               world_size=args.world_size,
               master_port=args.master_port)
    fix_random_seed(42)

    start_epoch = 0
    num_epochs = 10
    use_adam = True

    exp_dir = f'exp-lstm-adam-mmi-bigram-musan'
    setup_logger('{}/log/log-train'.format(exp_dir))
    tb_writer = SummaryWriter(log_dir=f'{exp_dir}/tensorboard')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    device_id = args.local_rank
    device = torch.device('cuda', device_id)
    phone_ids = lexicon.phone_symbols()

    if not Path(lang_dir / 'P.pt').is_file():
        logging.debug(f'Loading P from {lang_dir}/P.fst.txt')
        with open(lang_dir / 'P.fst.txt') as f:
            # P is not an acceptor because there is
            # a back-off state, whose incoming arcs
            # have label #0 and aux_label eps.
            P = k2.Fsa.from_openfst(f.read(), acceptor=False)

        phone_symbol_table = k2.SymbolTable.from_file(lang_dir / 'phones.txt')
        first_phone_disambig_id = find_first_disambig_symbol(
            phone_symbol_table)

        # P.aux_labels is not needed in later computations, so
        # remove it here.
        del P.aux_labels
        # CAUTION(fangjun): The following line is crucial.
        # Arcs entering the back-off state have label equal to #0.
        # We have to change it to 0 here.
        P.labels[P.labels >= first_phone_disambig_id] = 0

        P = k2.remove_epsilon(P)
        P = k2.arc_sort(P)
        torch.save(P.as_dict(), lang_dir / 'P.pt')
    else:
        logging.debug('Loading pre-compiled P')
        d = torch.load(lang_dir / 'P.pt')
        P = k2.Fsa.from_dict(d)

    graph_compiler = MmiTrainingGraphCompiler(
        lexicon=lexicon,
        P=P,
        device=device,
    )

    # load dataset
    feature_dir = Path('exp/data')
    logging.info("About to get train cuts")
    cuts_train = CutSet.from_json(feature_dir / 'cuts_train.json.gz')
    logging.info("About to get dev cuts")
    cuts_dev = CutSet.from_json(feature_dir / 'cuts_dev.json.gz')
    logging.info("About to get Musan cuts")
    cuts_musan = CutSet.from_json(feature_dir / 'cuts_musan.json.gz')

    logging.info("About to create train dataset")
    train = K2SpeechRecognitionDataset(cuts_train,
                                       cut_transforms=[
                                           CutConcatenate(),
                                           CutMix(cuts=cuts_musan,
                                                  prob=0.5,
                                                  snr=(10, 20))
                                       ])
    train_sampler = SingleCutSampler(
        cuts_train,
        max_frames=40000,
        shuffle=True,
    )
    logging.info("About to create train dataloader")
    train_dl = torch.utils.data.DataLoader(train,
                                           sampler=train_sampler,
                                           batch_size=None,
                                           num_workers=4)
    logging.info("About to create dev dataset")
    validate = K2SpeechRecognitionDataset(cuts_dev)
    valid_sampler = SingleCutSampler(cuts_dev, max_frames=12000)
    logging.info("About to create dev dataloader")
    valid_dl = torch.utils.data.DataLoader(validate,
                                           sampler=valid_sampler,
                                           batch_size=None,
                                           num_workers=1)

    if not torch.cuda.is_available():
        logging.error('No GPU detected!')
        sys.exit(-1)

    logging.info("About to create model")
    device_id = 0
    device = torch.device('cuda', device_id)
    model = TdnnLstm1b(
        num_features=40,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)
    model.P_scores = nn.Parameter(P.scores.clone(), requires_grad=True)

    model.to(device)
    describe(model)

    if use_adam:
        learning_rate = 1e-3
        weight_decay = 5e-4
        optimizer = optim.AdamW(model.parameters(),
                                lr=learning_rate,
                                weight_decay=weight_decay)
        # Equivalent to the following in the epoch loop:
        #  if epoch > 6:
        #      curr_learning_rate *= 0.8
        lr_scheduler = optim.lr_scheduler.LambdaLR(
            optimizer, lambda ep: 1.0 if ep < 7 else 0.8**(ep - 6))
    else:
        learning_rate = 5e-5
        weight_decay = 1e-5
        momentum = 0.9
        lr_schedule_gamma = 0.7
        optimizer = optim.SGD(model.parameters(),
                              lr=learning_rate,
                              momentum=momentum,
                              weight_decay=weight_decay)
        lr_scheduler = optim.lr_scheduler.ExponentialLR(
            optimizer=optimizer, gamma=lr_schedule_gamma)

    best_objf = np.inf
    best_valid_objf = np.inf
    best_epoch = start_epoch
    best_model_path = os.path.join(exp_dir, 'best_model.pt')
    best_epoch_info_filename = os.path.join(exp_dir, 'best-epoch-info')
    global_batch_idx_train = 0  # for logging only

    if start_epoch > 0:
        model_path = os.path.join(exp_dir,
                                  'epoch-{}.pt'.format(start_epoch - 1))
        ckpt = load_checkpoint(filename=model_path,
                               model=model,
                               optimizer=optimizer,
                               scheduler=lr_scheduler)
        best_objf = ckpt['objf']
        best_valid_objf = ckpt['valid_objf']
        global_batch_idx_train = ckpt['global_batch_idx_train']
        logging.info(
            f"epoch = {ckpt['epoch']}, objf = {best_objf}, valid_objf = {best_valid_objf}"
        )

    for epoch in range(start_epoch, num_epochs):
        train_sampler.set_epoch(epoch)
        # LR scheduler can hold multiple learning rates for multiple parameter groups;
        # For now we report just the first LR which we assume concerns most of the parameters.
        curr_learning_rate = lr_scheduler.get_last_lr()[0]
        tb_writer.add_scalar('train/learning_rate', curr_learning_rate,
                             global_batch_idx_train)
        tb_writer.add_scalar('train/epoch', epoch, global_batch_idx_train)

        logging.info('epoch {}, learning rate {}'.format(
            epoch, curr_learning_rate))
        objf, valid_objf, global_batch_idx_train = train_one_epoch(
            dataloader=train_dl,
            valid_dataloader=valid_dl,
            model=model,
            device=device,
            graph_compiler=graph_compiler,
            optimizer=optimizer,
            current_epoch=epoch,
            tb_writer=tb_writer,
            num_epochs=num_epochs,
            global_batch_idx_train=global_batch_idx_train,
        )

        lr_scheduler.step()

        # the lower, the better
        if valid_objf < best_valid_objf:
            best_valid_objf = valid_objf
            best_objf = objf
            best_epoch = epoch
            save_checkpoint(filename=best_model_path,
                            model=model,
                            optimizer=None,
                            scheduler=None,
                            epoch=epoch,
                            learning_rate=curr_learning_rate,
                            objf=objf,
                            valid_objf=valid_objf,
                            global_batch_idx_train=global_batch_idx_train)
            save_training_info(filename=best_epoch_info_filename,
                               model_path=best_model_path,
                               current_epoch=epoch,
                               learning_rate=curr_learning_rate,
                               objf=objf,
                               best_objf=best_objf,
                               valid_objf=valid_objf,
                               best_valid_objf=best_valid_objf,
                               best_epoch=best_epoch)

        # we always save the model for every epoch
        model_path = os.path.join(exp_dir, 'epoch-{}.pt'.format(epoch))
        save_checkpoint(filename=model_path,
                        model=model,
                        optimizer=optimizer,
                        scheduler=lr_scheduler,
                        epoch=epoch,
                        learning_rate=curr_learning_rate,
                        objf=objf,
                        valid_objf=valid_objf,
                        global_batch_idx_train=global_batch_idx_train)
        epoch_info_filename = os.path.join(exp_dir,
                                           'epoch-{}-info'.format(epoch))
        save_training_info(filename=epoch_info_filename,
                           model_path=model_path,
                           current_epoch=epoch,
                           learning_rate=curr_learning_rate,
                           objf=objf,
                           best_objf=best_objf,
                           valid_objf=valid_objf,
                           best_valid_objf=best_valid_objf,
                           best_epoch=best_epoch)

    logging.warning('Done')
Exemplo n.º 11
0
def main():
    args = get_parser().parse_args()
    exp_dir = Path('exp-lstm-adam-mmi-bigram-musan-dist')
    setup_logger('{}/log/log-decode'.format(exp_dir), log_level='debug')

    # load L, G, symbol_table
    lang_dir = Path('data/lang_nosp')
    lexicon = Lexicon(lang_dir)

    phone_ids = lexicon.phone_symbols()

    phone_ids_with_blank = [0] + phone_ids
    ctc_topo = k2.arc_sort(build_ctc_topo(phone_ids_with_blank))

    logging.debug("About to load model")
    # Note: Use "export CUDA_VISIBLE_DEVICES=N" to setup device id to N
    # device = torch.device('cuda', 1)
    device = torch.device('cuda')
    model = TdnnLstm1b(
        num_features=80,
        num_classes=len(phone_ids) + 1,  # +1 for the blank symbol
        subsampling_factor=3)

    checkpoint = os.path.join(exp_dir, f'epoch-{args.epoch}.pt')
    load_checkpoint(checkpoint, model)
    model.to(device)
    model.eval()

    if not os.path.exists(lang_dir / 'HLG.pt'):
        logging.debug("Loading L_disambig.fst.txt")
        with open(lang_dir / 'L_disambig.fst.txt') as f:
            L = k2.Fsa.from_openfst(f.read(), acceptor=False)
        logging.debug("Loading G.fst.txt")
        with open(lang_dir / 'G.fst.txt') as f:
            G = k2.Fsa.from_openfst(f.read(), acceptor=False)
        first_phone_disambig_id = find_first_disambig_symbol(lexicon.phones)
        first_word_disambig_id = find_first_disambig_symbol(lexicon.words)
        HLG = compile_HLG(L=L,
                          G=G,
                          H=ctc_topo,
                          labels_disambig_id_start=first_phone_disambig_id,
                          aux_labels_disambig_id_start=first_word_disambig_id)
        torch.save(HLG.as_dict(), lang_dir / 'HLG.pt')
    else:
        logging.debug("Loading pre-compiled LG")
        d = torch.load(lang_dir / 'HLG.pt')
        HLG = k2.Fsa.from_dict(d)

    # load dataset
    feature_dir = Path('exp/data')
    logging.debug("About to get test cuts")
    cuts_test = CutSet.from_json(feature_dir / 'cuts_test-clean.json.gz')

    logging.info("About to create test dataset")
    test = K2SpeechRecognitionDataset(cuts_test)
    sampler = SingleCutSampler(cuts_test, max_frames=40000)
    logging.info("About to create test dataloader")
    test_dl = torch.utils.data.DataLoader(test,
                                          batch_size=None,
                                          sampler=sampler,
                                          num_workers=1)

    #  if not torch.cuda.is_available():
    #  logging.error('No GPU detected!')
    #  sys.exit(-1)

    logging.debug("convert HLG to device")
    HLG = HLG.to(device)
    HLG.aux_labels = k2.ragged.remove_values_eq(HLG.aux_labels, 0)
    HLG.requires_grad_(False)

    logging.debug("About to decode")
    results = decode(dataloader=test_dl,
                     model=model,
                     device=device,
                     HLG=HLG,
                     symbols=lexicon.words)

    test_set = 'test-clean'
    recog_path = exp_dir / f'recogs-{test_set}.txt'
    store_transcripts(path=recog_path, texts=results)
    logging.info(f'The transcripts are stored in {recog_path}')

    # The following prints out WERs, per-word error statistics and aligned
    # ref/hyp pairs.
    errs_filename = exp_dir / f'errs-{test_set}.txt'
    with open(errs_filename, 'w') as f:
        wer = write_error_stats(f, f'{test_set}', results)
    logging.info(f'The error stats are stored in {errs_filename}')