Exemplo n.º 1
0
def river_discharge(ncfile,shpfiles):
    """
    Calculates the river flux of all type-2 boundaries located with each polygon 
    specified with a shpfile polygon
    """

    # Load the spatial object
    sun = Spatial(ncfile,klayer=[-99])

    # Indentify the river cells
    ind = np.argwhere(sun.mark==2).ravel()
    #sun.j = ind

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xe[ind],sun.ye[ind],shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data={}
    for poly  in polynames:
        data.update({poly:{'Q_r':np.zeros((sun.Nt,)),'time':sun.time}})

    print 'Loading the data...'
    #U = sun.loadData(variable='U_F')
    sun.tstep = range(sun.Nt)
    U = np.zeros((sun.Nt,sun.Nkmax,ind.shape[0]))
    for tt in range(sun.Nt):
        sun.tstep = tt 
        tmp = sun.loadData(variable='U_F')
        U[tt,...] = tmp[:,ind]
        print '\t%d of %d...'%(tt,sun.Nt)

    for mask,poly in zip(masks,polynames):
        tmp_dA  = np.sum( np.sum(U*mask,axis=-1), axis=-1)
        data[poly]['Q_r']=tmp_dA


    return data
Exemplo n.º 2
0
def river_discharge(ncfile, shpfiles):
    """
    Calculates the river flux of all type-2 boundaries located with each polygon
    specified with a shpfile polygon
    """

    # Load the spatial object
    sun = Spatial(ncfile, klayer=[-99])

    # Indentify the river cells
    ind = np.argwhere(sun.mark == 2).ravel()
    #sun.j = ind

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xe[ind], sun.ye[ind], shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data = {}
    for poly in polynames:
        data.update({poly: {'Q_r': np.zeros((sun.Nt, )), 'time': sun.time}})

    print('Loading the data...')
    #U = sun.loadData(variable='U_F')
    sun.tstep = list(range(sun.Nt))
    U = np.zeros((sun.Nt, sun.Nkmax, ind.shape[0]))
    for tt in range(sun.Nt):
        sun.tstep = tt
        tmp = sun.loadData(variable='U_F')
        U[tt, ...] = tmp[:, ind]
        print('\t%d of %d...' % (tt, sun.Nt))

    for mask, poly in zip(masks, polynames):
        tmp_dA = np.sum(np.sum(U * mask, axis=-1), axis=-1)
        data[poly]['Q_r'] = tmp_dA

    return data
Exemplo n.º 3
0
def area_integrate(ncfile,varnames,shpfiles):
    """
    Area integrate a suntans variable for all time in the domain 
    specified with a shpfile polygon
    """
    # Use numexpr to try and speed things up
    import numexpr as ne

    # Load the spatial object
    sun = Spatial(ncfile,klayer=[-99])
    Ac = sun.Ac

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xv,sun.yv,shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data={}
    for poly  in polynames:
        data.update({poly:{'V':np.zeros((sun.Nt,)),'time':sun.time}})
        for varname in varnames:
            data[poly].update({varname:np.zeros((sun.Nt,))})

    sun.tstep = range(sun.Nt)
    for varname in varnames:
        print 'Area integrating varibles: %s ...'%(varname)
        tmp = sun.loadData(variable=varname)
        for mask,poly in zip(masks,polynames):
            tmp_dA = ne.evaluate("sum(tmp*Ac*mask,axis=1)")
            data[poly][varname]=tmp_dA


    return data
Exemplo n.º 4
0
def energy_budget(energyfile, polyfile, trange):
    """
    # Area-integrate the energy terms
    """
    varnames = [
        'KEz', 'PEz', 'uP', 'uKE', 'uPE', 'ueta', 'W_work', 'B_flux', 'diss'
    ]

    # Load the energy file as a suntans object
    sun = Spatial(energyfile)

    # Create the mask
    mask, maskpoly = maskShpPoly(sun.xv, sun.yv, polyfile)

    # Initialise the output dictionary
    tstep = list(range(0, sun.Nt))[trange[0]:trange[1]]
    nt = len(tstep)

    budget = {}
    for vv in varnames:
        budget.update({vv: np.zeros((nt, ))})

    for ii, tt in enumerate(tstep):
        print('Area-integrating step: %d of %d...' % (ii, tstep[-1]))
        for vv in varnames:
            sun.tstep = [tt]
            data = sun.loadData(variable=vv)
            budget[vv][ii], areatotal = sun.areaint(data, mask)

    budget.update({'time': sun.time[tstep]})

    # Calculate the time-rate of change of KE and PE
    dt = sun.timeraw[1] - sun.timeraw[0]
    budget.update({'dKE_dt': np.zeros((nt, ))})
    budget.update({'dPE_dt': np.zeros((nt, ))})
    budget['dKE_dt'][1::] = (budget['KEz'][1::] - budget['KEz'][0:-1]) / dt
    budget['dPE_dt'][1::] = (budget['PEz'][1::] - budget['PEz'][0:-1]) / dt

    return budget
Exemplo n.º 5
0
def area_integrate(ncfile, varnames, shpfiles):
    """
    Area integrate a suntans variable for all time in the domain
    specified with a shpfile polygon
    """
    # Use numexpr to try and speed things up
    import numexpr as ne

    # Load the spatial object
    sun = Spatial(ncfile, klayer=[-99])
    Ac = sun.Ac

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xv, sun.yv, shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data = {}
    for poly in polynames:
        data.update({poly: {'V': np.zeros((sun.Nt, )), 'time': sun.time}})
        for varname in varnames:
            data[poly].update({varname: np.zeros((sun.Nt, ))})

    sun.tstep = list(range(sun.Nt))
    for varname in varnames:
        print('Area integrating varibles: %s ...' % (varname))
        tmp = sun.loadData(variable=varname)
        for mask, poly in zip(masks, polynames):
            tmp_dA = ne.evaluate("sum(tmp*Ac*mask,axis=1)")
            data[poly][varname] = tmp_dA

    return data
Exemplo n.º 6
0
def energy_budget(energyfile,polyfile,trange):
    """
    # Area-integrate the energy terms
    """
    varnames = ['KEz','PEz','uP','uKE','uPE','ueta','W_work','B_flux','diss']

    # Load the energy file as a suntans object
    sun = Spatial(energyfile)

    # Create the mask
    mask,maskpoly = maskShpPoly(sun.xv,sun.yv,polyfile)

    # Initialise the output dictionary
    tstep = range(0,sun.Nt)[trange[0]:trange[1]]
    nt = len(tstep)

    budget ={}
    for vv in varnames:
        budget.update({vv:np.zeros((nt,))})

    for ii,tt in enumerate(tstep):
        print 'Area-integrating step: %d of %d...'%(ii,tstep[-1])
        for vv in varnames:
            sun.tstep=[tt]
            data = sun.loadData(variable=vv)
            budget[vv][ii],areatotal = sun.areaint(data,mask)

    budget.update({'time':sun.time[tstep]})

    # Calculate the time-rate of change of KE and PE
    dt = sun.timeraw[1]-sun.timeraw[0]
    budget.update({'dKE_dt':np.zeros((nt,))})
    budget.update({'dPE_dt':np.zeros((nt,))})
    budget['dKE_dt'][1::] = (budget['KEz'][1::]-budget['KEz'][0:-1])/dt
    budget['dPE_dt'][1::] = (budget['PEz'][1::]-budget['PEz'][0:-1])/dt

    return budget
Exemplo n.º 7
0
def volume_integrate(ncfile, varnames, shpfiles, constantdzz=False):
    """
    Volume integrate a suntans variable for all time in the domain
    specified with a shpfile polygon
    """
    # Use numexpr to try and speed things up
    import numexpr as ne

    # Load the spatial object
    sun = Spatial(ncfile, klayer=[-99])
    Ac = sun.Ac

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xv, sun.yv, shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data = {}
    for poly in polynames:
        data.update({poly: {'V': np.zeros((sun.Nt, )), 'time': sun.time}})
        for varname in varnames:
            data[poly].update({varname: np.zeros((sun.Nt, ))})

    # Fix dzz for testing
    sun.tstep = [0]
    dzz = sun.loadData(variable='dzz')
    h = ne.evaluate("sum(dzz,axis=0)")

    #dzz = np.repeat(sun.dz[:,np.newaxis],sun.Nc,axis=1)
    for ii in range(sun.Nt):
        sun.tstep = [ii]
        print('Volume integrating for time step: %d of %d...' % (ii, sun.Nt))

        # Load the depth and mean age arrays
        if not constantdzz:
            dzz = sun.loadData(variable='dzz')
            # Calculate the total volume
            #h = np.sum(dzz,axis=0)
            h = ne.evaluate("sum(dzz,axis=0)")

        for varname in varnames:
            tmp = sun.loadData(variable=varname)

            for mask, poly in zip(masks, polynames):
                V, A = sun.areaint(h, mask=mask)  # Depth*area
                data[poly]['V'][ii] = V

                # Get the depth-integral
                #tmp_dz = sun.depthint(tmp,dz=dzz)
                tmp_dz = ne.evaluate("sum(tmp*dzz,axis=0)")

                # Calculate the volume-integral
                #tmp_dV, A = sun.areaint(tmp_dz,mask=mask)
                tmp_dV = ne.evaluate("sum(tmp_dz*Ac*mask)")

                data[poly][varname][ii] = tmp_dV / V

    return data
Exemplo n.º 8
0
def volume_integrate(ncfile,varnames,shpfiles,constantdzz=False):
    """
    Volume integrate a suntans variable for all time in the domain 
    specified with a shpfile polygon
    """
    # Use numexpr to try and speed things up
    import numexpr as ne

    # Load the spatial object
    sun = Spatial(ncfile,klayer=[-99])
    Ac = sun.Ac

    # Calculate the mask region
    if type(shpfiles) != type([]):
        shpfiles = [shpfiles]

    masks = []
    polynames = []
    for shpfile in shpfiles:
        mask, maskpoly = maskShpPoly(sun.xv,sun.yv,shpfile)
        masks.append(mask)
        polynames.append(os.path.splitext(os.path.basename(shpfile))[0])

    # Create a dictionary with output info
    data={}
    for poly  in polynames:
        data.update({poly:{'V':np.zeros((sun.Nt,)),'time':sun.time}})
        for varname in varnames:
            data[poly].update({varname:np.zeros((sun.Nt,))})

    # Fix dzz for testing
    sun.tstep = [0]
    dzz = sun.loadData(variable='dzz')
    h = ne.evaluate("sum(dzz,axis=0)")

    #dzz = np.repeat(sun.dz[:,np.newaxis],sun.Nc,axis=1)
    for ii in range(sun.Nt):
        sun.tstep = [ii]
        print 'Volume integrating for time step: %d of %d...'%(ii,sun.Nt)

        # Load the depth and mean age arrays
        if not constantdzz:
            dzz = sun.loadData(variable='dzz')
            # Calculate the total volume 
            #h = np.sum(dzz,axis=0)
            h = ne.evaluate("sum(dzz,axis=0)")
        
        for varname in varnames:
            tmp = sun.loadData(variable=varname)

            for mask,poly in zip(masks,polynames):
                V, A = sun.areaint(h,mask=mask) # Depth*area
                data[poly]['V'][ii] = V

                # Get the depth-integral 
                #tmp_dz = sun.depthint(tmp,dz=dzz)
                tmp_dz = ne.evaluate("sum(tmp*dzz,axis=0)")
                
                # Calculate the volume-integral
                #tmp_dV, A = sun.areaint(tmp_dz,mask=mask)
                tmp_dV = ne.evaluate("sum(tmp_dz*Ac*mask)")

                data[poly][varname][ii]=tmp_dV/V

    return data