Exemplo n.º 1
0
	def stateLWISUpdate(self):

		cp=self.prevPoses[-1]; 
		prev = self.prevPoses[-2]; 
		theta = np.arctan2([cp[1]-prev[1]],[cp[0]-prev[0]]);
		#print(theta);  
		radius = self.ROBOT_VIEW_RADIUS; 
		points = [[cp[0]-radius,cp[1]-radius],[cp[0]+radius,cp[1]-radius],[cp[0]+radius,cp[1]+radius],[cp[0]-radius,cp[1]+radius]]; 
		soft = Softmax()
		soft.buildPointsModel(points,steepness=1);
		#soft.buildTriView(pose = [cp[0],cp[1],theta],length=10,steepness=5); 
		change = False; 
		post = GM(); 
		for g in self.belief:
			if(distance(cp,g.mean) > self.ROBOT_VIEW_RADIUS+5):
				post.addG(g); 
			else:
				change = True; 
				tmp = soft.lwisUpdate(g,0,20,inverse=True);
				#self.bounds = {'low':[0,0],'high':[437,754]}
				tmp.mean[0] = max(self.bounds['low'][0]+1,tmp.mean[0]); 
				tmp.mean[1] = max(self.bounds['low'][1]+1,tmp.mean[1]); 
				tmp.mean[0] = min(self.bounds['high'][0]-1,tmp.mean[0]);
				tmp.mean[1] = min(self.bounds['high'][1]-1,tmp.mean[1]);  


				post.addG(tmp);
		self.belief = post; 
		self.belief.normalizeWeights(); 

		return change; 
Exemplo n.º 2
0
def fullPipeline():
    #np.random.seed(5)

    soft = Softmax()
    points = generateSketch(verbosity=1)
    soft.buildPointsModel(points, steepness=5)
    joint, pclass, plabs = labelClasses(soft, points)
    # labelClasses_Example(soft, points)

    [x, y, c] = soft.plot2D(low=[0, 0], high=[10, 10], vis=False)
    plt.contourf(x, y, c, cmap="Blues")

    plt.figure()
    matProb = np.zeros(shape=(soft.size, 9))
    labs = ['East', 'NorthEast', 'North', 'NorthWest',
            'West', 'SouthWest', 'South', 'SouthEast']

    # For every class
    for i in range(0, len(pclass)):
        # normalize across pclass
        c = pclass[i]
        for j in range(0, len(labs)):
            matProb[i, j+1] = c[labs[j]]
    matProb[0, :] = 0
    # matProb[0, 0] = 1

    plt.imshow(matProb, cmap='inferno')
    plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['Inside', 'East', 'NorthEast',
                                                'North', 'NorthWest', 'West', 'SouthWest', 'South', 'SouthEast'], rotation=90)

    plt.show()
Exemplo n.º 3
0
def buildRecFromCentroidOrient():
    centroid = [5, 4]
    orient = 0
    length = 2
    width = 4
    theta1 = orient * math.pi / 180

    h = math.sqrt((width / 2) * (width / 2) + (length / 2) * (length / 2))
    theta2 = math.asin((width / 2) / h)

    s1 = h * math.sin(theta1 + theta2)
    s2 = h * math.cos(theta1 + theta2)

    s3 = h * math.sin(theta1 - theta2)
    s4 = h * math.cos(theta1 - theta2)

    pz = Softmax()

    points = []
    points = [[centroid[0] + s2, centroid[1] + s1],
              [centroid[0] + s4, centroid[1] + s3],
              [centroid[0] - s2, centroid[1] - s1],
              [centroid[0] - s4, centroid[1] - s3]]

    for p in points:
        plt.scatter(p[0], p[1])
    plt.show()

    pz.buildPointsModel(points, steepness=5)
    pz.plot2D(low=[0, 0], high=[10, 10])
Exemplo n.º 4
0
def buildTriView():

    pose = [2, 1, 165]
    l = 3
    #Without Cutting
    triPoints = [
        [pose[0], pose[1]],
        [
            pose[0] + l * math.cos(2 * -0.261799 + math.radians(pose[2])),
            pose[1] + l * math.sin(2 * -0.261799 + math.radians(pose[2]))
        ],
        [
            pose[0] + l * math.cos(2 * 0.261799 + math.radians(pose[2])),
            pose[1] + l * math.sin(2 * 0.261799 + math.radians(pose[2]))
        ]
    ]

    #With Cutting
    lshort = 0.5
    triPoints = [
        [
            pose[0] + lshort * math.cos(2 * 0.261799 + math.radians(pose[2])),
            pose[1] + lshort * math.sin(2 * 0.261799 + math.radians(pose[2]))
        ],
        [
            pose[0] + lshort * math.cos(2 * -0.261799 + math.radians(pose[2])),
            pose[1] + lshort * math.sin(2 * -0.261799 + math.radians(pose[2]))
        ],
        [
            pose[0] + l * math.cos(2 * -0.261799 + math.radians(pose[2])),
            pose[1] + l * math.sin(2 * -0.261799 + math.radians(pose[2]))
        ],
        [
            pose[0] + l * math.cos(2 * 0.261799 + math.radians(pose[2])),
            pose[1] + l * math.sin(2 * 0.261799 + math.radians(pose[2]))
        ]
    ]

    pz = Softmax()
    pz.buildPointsModel(triPoints, steepness=10)
    pz.plot2D(low=[-10, -10], high=[10, 10])
Exemplo n.º 5
0
	def stateObsUpdate(self,name,relation,pos="Is"):
		if(name == 'You'):
			#Take Cops Position, builid box around it
			cp=self.copPose; 
			points = [[cp[0]-5,cp[1]-5],[cp[0]+5,cp[1]-5],[cp[0]+5,cp[1]+5],[cp[0]-5,cp[1]+5]]; 
			soft = Softmax()
			soft.buildPointsModel(points,steepness=3); 
		else:
			soft = self.sketches[name]; 
		softClass = self.spatialRealtions[relation]; 

		if(pos=="Is"):
			self.belief = soft.runVBND(self.belief,softClass); 
			self.belief.normalizeWeights(); 
		else:
			tmp = GM();
			for i in range(0,5):
				if(i!=softClass):
					tmp.addGM(soft.runVBND(self.belief,i));
			tmp.normalizeWeights(); 
			self.belief=tmp; 
		if(self.belief.size > self.MAX_BELIEF_SIZE):
			self.belief.condense(self.MAX_BELIEF_SIZE); 
			self.belief.normalizeWeights()
Exemplo n.º 6
0
    print(pairedPoints)

    #Get N Vertices of the shape
    cHull = ConvexHull(pairedPoints)
    vertices = fitSimplePolyToHull(cHull, pairedPoints, N=5)
    #vertices = fitBestPolyToHull(cHull,pairedPoints);

    #Show Vertices
    plt.scatter([vertices[i][0] for i in range(0, len(vertices))],
                [vertices[i][1] for i in range(0, len(vertices))])
    plt.show()

    #Make softmax model
    pz = Softmax()
    pz.buildPointsModel(vertices, steepness=5)

    #Update belief
    post = pz.runVBND(prior, 4)

    #display
    fig, axarr = plt.subplots(3)
    [xprior, yprior, cprior] = prior.plot2D(low=[0, 0],
                                            high=[10, 10],
                                            vis=False)
    [xobs, yobs, cobs] = pz.plot2D(low=[0, 0],
                                   high=[10, 10],
                                   delta=0.1,
                                   vis=False)
    [xpost, ypost, cpost] = post.plot2D(low=[0, 0], high=[10, 10], vis=False)
    axarr[0].contourf(xprior, yprior, cprior, cmap='viridis')
Exemplo n.º 7
0
class Sketch:

    def __init__(self, params, seed=None):
        if(seed is not None):
            np.random.seed(seed)

        self.name = params['name']
        self.centroid = params['centroid']
        if(params['points'] is not None):
            self.points = params['points']; 
        else:
            self.points = self.generateSketch(params)
        self.inflated = self.inflatePoints(params)
        self.labels = ['East', 'NorthEast', 'North', 'NorthWest',
                       'West', 'SouthWest', 'South', 'SouthEast']
        self.sm = Softmax()
        self.sm.buildPointsModel(self.points, steepness=params['steepness'])
        self.sm_inf = Softmax()
        self.sm_inf.buildPointsModel(
            self.inflated, steepness=params['steepness'])
        [self.joint, self.con_class, self.con_label] = self.labelClasses()

    def displayClasses(self, show=True):
        fig = plt.figure()
        [x, y, c] = self.sm.plot2D(low=[0, 0], high=[10, 10], vis=False)
        [x_inf, y_inf, c_inf] = self.sm_inf.plot2D(
            low=[0, 0], high=[10, 10], vis=False)

        c_inf = np.array(c_inf)
        c_inf[c_inf == 0] = 10
        c_inf[c_inf < 10] = 0

        plt.contourf(x_inf, y_inf, c_inf, cmap="Reds", alpha=1)
        plt.contourf(x, y, c, cmap="Blues", alpha=0.5)

        cid = fig.canvas.mpl_connect(
            'button_press_event', self.onclick_classes)

        if(show):
            plt.show()

    def onclick_classes(self, event):
        # print('%s click: button=%d, x=%d, y=%d, xdata=%f, ydata=%f' %
        #       ('double' if event.dblclick else 'single', event.button,
        #        event.x, event.y, event.xdata, event.ydata))
        print("Point Selected: [{:.2f},{:.2f}]".format(
            event.xdata, event.ydata))
        point = [event.xdata, event.ydata]
        if(event.dblclick):
            class_test = np.zeros(shape=(self.sm.size))
            for i in range(0, len(class_test)):
                class_test[i] = self.sm.pointEvalND(i, point)

            # print(class_test)

            ans = {}
            for l in self.labels:
                ans[l] = 0
                for i in range(0, len(class_test)):
                    te = self.con_label[i]
                    ans[l] += self.con_label[i][l]*class_test[i]

            suma = sum(ans.values())
            for k in ans.keys():
                ans[k] /= suma

            print("Outputing all label probabilities:")
            for k, v in ans.items():
                if(v > 0.009):
                    print("P: {:0.2f}, L: {}".format(v, k))

        else:
            # Find just most likely class
            # Check all softmax classes

            # Check if it's near
            near = ""
            near_test = np.zeros(shape=(self.sm_inf.size))
            for i in range(0, len(near_test)):
                near_test[i] = self.sm_inf.pointEvalND(i, point)
            if(np.argmax(near_test) == 0):
                near = 'Near'

            # Check other classes
            class_test = np.zeros(shape=(self.sm.size))
            for i in range(0, len(class_test)):
                class_test[i] = self.sm.pointEvalND(i, point)

            best = np.argmax(class_test)
            if(best == 0):
                near = ""
                best_lab = "Inside"
            else:
                te = self.con_label[best]
                best_lab = max(te, key=te.get)

            print("Most Likely Class: {}".format(near + " " + best_lab))
            print("")

    def giveMostLikelyClass(self,point):
        near = ""
        near_test = np.zeros(shape=(self.sm_inf.size))
        for i in range(0, len(near_test)):
            near_test[i] = self.sm_inf.pointEvalND(i, point)
        if(np.argmax(near_test) == 0):
            near = 'Near'

        # Check other classes
        class_test = np.zeros(shape=(self.sm.size))
        for i in range(0, len(class_test)):
            class_test[i] = self.sm.pointEvalND(i, point)

        best = np.argmax(class_test)
        if(best == 0):
            near = ""
            best_lab = "Inside"
        else:
            te = self.con_label[best]
            best_lab = max(te, key=te.get)
        res = near + " " + best_lab; 
        return res

    def giveProbabilities(self,point):
        class_test = np.zeros(shape=(self.sm.size))
        for i in range(1, len(class_test)):
            class_test[i] = self.sm.pointEvalND(i, point)

        # print(class_test)

        ans = {}
        for l in self.labels:
            ans[l] = 0
            for i in range(1, len(class_test)):
                te = self.con_label[i]
                ans[l] += self.con_label[i][l]*class_test[i]
        ans['Inside'] = self.sm.pointEvalND(0,point); 

        suma = sum(ans.values())
        for k in ans.keys():
            ans[k] /= suma

        return ans; 

    def giveNearProb(self,point):
        near_test = np.zeros(shape=(self.sm_inf.size))
        for i in range(0, len(near_test)):
            near_test[i] = self.sm_inf.pointEvalND(i, point)
        return near_test; 


    def answerQuestion(self,point,label,thresh = .8):
        # res = self.giveMostLikelyClass(point)
        # if(res == label):

        ##################################################
        #TODO: Integrate Camera Positions
        ##################################################

        probs = self.giveProbabilities(point); 
        maxi = max(probs.values()); 
        for k in probs.keys():
            probs[k] /= maxi; 

        if(label == "Near"):
            nearProb = self.giveNearProb(point); 
            if(np.argmax(nearProb) == 0):
                return 'Yes'
            else:
                return 'No'
        elif("Near" in label):
            spl = label.split(); 
            nearProb = self.giveNearProb(point); 
            if(probs[spl[1]] > thresh and np.argmax(nearProb) == 0):
                return 'Yes'
            else:
                return 'No'
        elif(probs[label] > thresh):
            
            return 'Yes'; 
        else: 
            return 'No'; 


    def displayProbTables(self, show=True):
        plt.figure()

        matProb = np.zeros(shape=(self.sm.size, len(self.labels)+1))

        # For every class
        for i in range(0, len(self.con_label)):
            # normalize across self.con_label
            c = self.con_label[i]
            for j in range(0, len(self.labels)):
                matProb[i, j+1] = c[self.labels[j]]
        matProb[0, :] = 0
        matProb[0, 0] = 1

        plt.imshow(matProb, cmap='inferno')
        plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['Inside', 'East', 'NorthEast',
                                                    'North', 'NorthWest', 'West', 'SouthWest', 'South', 'SouthEast'], rotation=90)
        plt.title("Conditional p(label | class)")
        plt.ylabel("Softmax Class")
        plt.colorbar()

        plt.figure()
        matProb = np.zeros(shape=(self.sm.size, len(self.labels)+1))

        # For every class
        for i in range(0, len(self.con_class)):
            # normalize across self.con_class
            c = self.con_class[i]
            for j in range(0, len(self.labels)):
                matProb[i, j+1] = c[self.labels[j]]
        matProb[0, :] = 0
        matProb[0, 0] = 1

        plt.imshow(matProb, cmap='inferno')
        plt.xticks([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], ['Inside', 'East', 'NorthEast',
                                                    'North', 'NorthWest', 'West', 'SouthWest', 'South', 'SouthEast'], rotation=90)
        plt.title("Conditional p(class | label)")
        plt.ylabel("Softmax Class")
        plt.colorbar()

        if(show):
            plt.show()

    def displayPoints(self, show=True):
        plt.figure()
        plt.scatter(self.points[:, 0], self.points[:, 1])

        if(show):
            plt.show()

    def generateSketch(self, params):

        # given a point, spread rays out in random directions with semi random distance, and a random number of points

        # Tuning Paramters
        ####################################
        centroid = params['centroid']
        dist_nom = params['dist_nom']
        dist_noise = params['dist_noise']
        angle_noise = params['angle_noise']
        pois_mean = params['pois_mean']
        ####################################

        # Fixed Parameters
        ####################################
        # Has to be at least a triangle
        pois_min = 3
        ####################################

        # Chose Number of Points from Poisson Distribution
        numVerts = np.random.poisson(pois_mean)+pois_min

        # Debugging
        # numVerts = min(numVerts, 5)

        points = []

        # Note: Angles must preserve order
        totalAngle = 0
        # Precompute angles
        allAngles = np.zeros(numVerts)
        for i in range(0, numVerts):
            totalAngle += 2*np.pi/numVerts + np.random.normal(0, angle_noise)
            allAngles[i] = totalAngle

        # Normalize and expand to 2pi
        allAngles /= totalAngle
        allAngles *= 1.999*np.pi

        for i in range(0, numVerts):
            h = dist_nom + np.random.normal(0, dist_noise)
            points.append([h*np.cos(allAngles[i])+centroid[0],
                           h*np.sin(allAngles[i])+centroid[1]])

        points = np.array(points)

        cHull = ConvexHull(points)
        points = points[cHull.vertices]

        return points

    def inflatePoints(self, params):

        # Tuning Paramters
        ####################################
        area_multiplier = params['area_multiplier']
        ####################################

        ske = Polygon(self.points)

        ske2 = affinity.scale(ske, xfact=np.sqrt(
            area_multiplier), yfact=np.sqrt(area_multiplier))

        inflation = np.array(ske2.exterior.coords.xy).T

        return inflation

    def findLabels(self, point, centroid):
        # point must first be normalized with respect to centroid
        pprime = [point[0] - centroid.x, point[1] - centroid.y]

        ang = np.arctan2(pprime[1], pprime[0])*180/np.pi

        if(ang < 0):
            ang += 360

        allLabels = []

        # Off-Axial
        if(ang < 90):
            allLabels.append("NorthEast")
        elif(ang < 180):
            allLabels.append("NorthWest")
        elif(ang < 270):
            allLabels.append("SouthWest")
        elif(ang <= 360):
            allLabels.append("SouthEast")

        # On-Axial
        if(ang < 45):
            allLabels.append("East")
        elif(ang < 135):
            allLabels.append("North")
        elif(ang < 225):
            allLabels.append("West")
        elif(ang < 315):
            allLabels.append("South")
        elif(ang < 360):
            allLabels.append("East")
        return allLabels

    def labelClasses(self):

        # Take a ring of points, around centroid of object
        # For each point, identify it's cardinal direction, can be multiple levels
        # For each class, add together eval at points into direction labels
        # Normalize direction labels, and you have a soft classification of each class
        # Maybe threshold during normalization

        # Returns:
        # Joint probability dirLabs
        # Conditional p(class|labs)
        # Conditional p(labs|class)

        ske = Polygon(self.points)
        # print(ske.centroid)
        cent = ske.centroid
        hfactor = 3
        ra = hfactor*np.sqrt(ske.area/np.pi)

        # Direction Percentages
        dirLabs = []
        for i in range(0, len(self.points)+1):
            dirLabs.append({"West": 0, "East": 0, "North": 0, "South": 0,
                            "SouthWest": 0, "NorthWest": 0, "NorthEast": 0, "SouthEast": 0})

        numDegrees = 360
        testPoints = []
        for i in range(0, numDegrees):
            testPoints.append([ra*np.cos((i/numDegrees)*360 * np.pi/180)+cent.x,
                               ra*np.sin((i/numDegrees)*360 * np.pi/180)+cent.y])
        # for i in range(0,10000):
        #     testPoints.append([np.random.random()*10,np.random.random()*10])

        testPoints = np.array(testPoints)

        suma = 0
        # For each point
        for t in testPoints:
            # Find its labels
            labs = self.findLabels(t, cent)
            # Now apply to each class
            for c in range(0, self.sm.size):
                # eval
                tmp = self.sm.pointEvalND(c, t)
                for l in labs:
                    # add to dirLabs[c][l]
                    dirLabs[c][l] += tmp
                    suma += tmp

        # Normalize dirlabs to obtain p(class,label)
        for c in dirLabs:
            for k in c.keys():
                c[k] /= suma
            # print(c)

        cond_classes = deepcopy(dirLabs)
        labs = self.labels

        # For every class
        for i in range(0, len(cond_classes)):
            # normalize across labels
            c = cond_classes[i]
            suma = 0
            for k, v in c.items():
                suma += v
            for key in c.keys():
                c[key] /= suma

        cond_labs = deepcopy(dirLabs)

        for l in labs:
            suma = 0
            for c in cond_labs:
                suma += c[l]
            for c in cond_labs:
                c[l] /= suma

        return dirLabs, cond_classes, cond_labs
Exemplo n.º 8
0
	def makeSketch(self,vertices,name):
		pz = Softmax(); 
		vertices.sort(key=lambda x: x[1])

		pz.buildPointsModel(vertices,steepness=2); 
		self.sketches[name] = pz;