Exemplo n.º 1
0
    def _dilated_conv_layer(self, output_channels, dilation_rate, apply_relu,
                            name):
        """Create a dilated convolution layer.

    Args:
      output_channels: int. Number of output channels for each pixel.
      dilation_rate: int. Represents how many pixels each stride offset will
        move. A value of 1 indicates a standard convolution.
      apply_relu: bool. If True, a ReLU non-linearlity is added.
      name: string. Name for layer.

    Returns:
      a sonnet Module for a dilated convolution.
    """
        layer_components = [
            conv.Conv2D(output_channels, [3, 3],
                        initializers=self._initializers,
                        regularizers=self._regularizers,
                        rate=dilation_rate,
                        name="dilated_conv_" + name),
        ]
        if apply_relu:
            layer_components.append(
                lambda net: tf.nn.relu(net, name="relu_" + name))
        return sequential.Sequential(layer_components, name=name)
Exemplo n.º 2
0
    def _build(self, images):
        """Build dilation module.

    Args:
      images: Tensor of shape [batch_size, height, width, depth]
        and dtype float32. Represents a set of images with an arbitrary depth.
        Note that when using the default initializer, depth must equal
        num_output_classes.

    Returns:
      Tensor of shape [batch_size, height, width, num_output_classes] and dtype
        float32. Represents, for each image and pixel, logits for per-class
        predictions.

    Raises:
      IncompatibleShapeError: If images is not rank 4.
      ValueError: If model_size is not one of 'basic' or 'large'.
    """
        num_classes = self._num_output_classes

        if len(images.get_shape()) != 4:
            raise base.IncompatibleShapeError(
                "'images' must have shape [batch_size, height, width, depth].")

        if self.WEIGHTS not in self._initializers:
            if self._model_size == self.BASIC:
                self._initializers[self.WEIGHTS] = identity_kernel_initializer
            elif self._model_size == self.LARGE:
                self._initializers[
                    self.WEIGHTS] = noisy_identity_kernel_initializer(
                        num_classes)
            else:
                raise ValueError("Unrecognized model_size: %s" %
                                 self._model_size)

        if self.BIASES not in self._initializers:
            self._initializers[self.BIASES] = tf.zeros_initializer()

        if self._model_size == self.BASIC:
            self._conv_modules = [
                self._dilated_conv_layer(num_classes, 1, True, "conv1"),
                self._dilated_conv_layer(num_classes, 1, True, "conv2"),
                self._dilated_conv_layer(num_classes, 2, True, "conv3"),
                self._dilated_conv_layer(num_classes, 4, True, "conv4"),
                self._dilated_conv_layer(num_classes, 8, True, "conv5"),
                self._dilated_conv_layer(num_classes, 16, True, "conv6"),
                self._dilated_conv_layer(num_classes, 1, True, "conv7"),
                self._dilated_conv_layer(num_classes, 1, False, "conv8"),
            ]
        elif self._model_size == self.LARGE:
            self._conv_modules = [
                self._dilated_conv_layer(2 * num_classes, 1, True, "conv1"),
                self._dilated_conv_layer(2 * num_classes, 1, True, "conv2"),
                self._dilated_conv_layer(4 * num_classes, 2, True, "conv3"),
                self._dilated_conv_layer(8 * num_classes, 4, True, "conv4"),
                self._dilated_conv_layer(16 * num_classes, 8, True, "conv5"),
                self._dilated_conv_layer(32 * num_classes, 16, True, "conv6"),
                self._dilated_conv_layer(32 * num_classes, 1, True, "conv7"),
                self._dilated_conv_layer(num_classes, 1, False, "conv8"),
            ]
        else:
            raise ValueError("Unrecognized model_size: %s" % self._model_size)

        dilation_mod = sequential.Sequential(self._conv_modules,
                                             name="dilation")
        return dilation_mod(images)