Exemplo n.º 1
0
# a = snaps[0]
# nans_imgshow(a)
# convert to greyscale
greysnaps = nanrgb2grey(snaps)
testimgs = nanrgb2grey(testimgs)

testimg = testimgs[35]

save_image('image-analysis/train.png', img)
save_image('image-analysis/test.png', testimg)


h1 = datamae['heading'][35]
print('heading by mae:', h1)
save_image('image-analysis/test-rotated-mae.png', rotate(h1, testimg))


heat = np.abs(testimgs[35] - greysnaps[127])
save_image('image-analysis/mae-heat.png', heat)


h2 = datacc['heading'][35]
print('heading by cc:', h2)
save_image('image-analysis/test-rotated-cc.png', rotate(h2, testimg))
# plt.imshow(heat, cmap='hot', interpolation='nearest')
# plt.show()



index_mae = datamae['best_index'][35]
Exemplo n.º 2
0
def log_error_points(route,
                     traj,
                     nav,
                     thresh=0.5,
                     route_id=1,
                     target_path=None):
    if target_path:
        logs_path = os.path.join(target_path, 'route' + str(route_id))
    else:
        logs_path = 'route' + str(route_id)
    os.makedirs(logs_path, exist_ok=True)
    # the antworld agent
    if not route.get('qimgs'):
        agent = antworld2.Agent()
    # get xy coords
    traj_xy = np.column_stack((traj['x'], traj['y']))
    route_xy = np.column_stack((route['x'], route['y']))

    rsims_matrices = nav.get_rsims_log()
    index_log = nav.get_index_log()
    degrees = nav.degrees

    # Loop through every test point
    for i in range(len(traj['heading'])):
        dist = np.squeeze(
            cdist(np.expand_dims(traj_xy[i], axis=0), route_xy, 'euclidean'))
        min_dist_i = np.argmin(dist)
        min_dist = dist[min_dist_i]
        route_match_i = index_log[i]
        if min_dist > thresh:
            point_path = os.path.join(logs_path, str(i))
            os.mkdir(point_path)
            # Save best match window (or non) images
            if traj.get('window_log'):
                w = traj.get('window_log')
                for wi in range(w[0], w[1]):
                    imgfname = route['filename'][wi]
                    cv.imwrite(os.path.join(point_path, imgfname),
                               route['imgs'][wi])
            else:  # If perfect memory is used
                imgfname = route['filename'][route_match_i]
                cv.imwrite(os.path.join(point_path, imgfname),
                           route['imgs'][route_match_i])

            # save the minimum distance image
            imgfname = 'img{}-mindist.png'.format(min_dist_i)
            cv.imwrite(os.path.join(point_path, imgfname),
                       route['imgs'][min_dist_i])

            # Save the query image rotated to the extractred direction
            h = traj['heading'][i]
            if route.get('qimgs'):
                rimg = rotate(h, route['qimgs'][i])
                imgfname = 'rotated-grid-h' + str(h) + '.png'
                cv.imwrite(os.path.join(point_path, imgfname), rimg)
                imgfname = 'test-grid.png'
                cv.imwrite(os.path.join(point_path, imgfname),
                           route['qimgs'][i])
            else:
                #TODO: Rotating the image to the recovered heading is nto enough here as it is also
                # dependent on the heading of the previous lo9cation or in other word the location where the
                # test image was sampled.
                img = agent.get_img(traj_xy[i], h)
                # rimg = rotate(h, img)
                imgfname = str(h) + '.png'
                cv.imwrite(os.path.join(point_path, imgfname), img)
            # Save ridf
            rsim = rsims_matrices[i][route_match_i]
            fig = plt.figure()
            plt.plot(degrees, rsim)
            fig.savefig(os.path.join(point_path, 'rsim.png'))
            plt.close(fig)

            # Save window or full memory rsims heatmap
            fig = plt.figure()
            plt.imshow(rsims_matrices[i], cmap='hot')
            fig.savefig(os.path.join(point_path, 'heat.png'))
            plt.close(fig)

            path = os.path.join(point_path, 'map.png')
            plot_route_errors(route,
                              traj,
                              route_i=route_match_i,
                              error_i=i,
                              path=path)
Exemplo n.º 3
0
route_id = 1
path = 'new-antworld/exp1/route' + str(route_id) + '/'
route = load_route_naw(path, route_id=1, imgs=True)

imgs = route['imgs']
im = cv.resize(imgs[0], (256, 35))
im = im.astype(np.int32)
imm = ma.masked_array(im, mask)

# plt.imshow(rotate(90, imm), cmap='gray')
# plt.show()

# Original image
sims = rmf(im, im, d_range=(-180, 180))
imr = rotate(90, im)
print(np.mean(np.abs(im - imr)))
# Masked image
masked_sims = rmf(imm, imm, d_range=(-180, 180))
print(np.ma.mean(imm - rotate(90, imm)))

# Nan's image
imn = imm.astype(np.float64)
imn = imn.filled(np.nan)
#nans_imgshow(rotate(90, imn))
print(np.nanmean(imn - rotate(90, imn)))
nan_sims = rmf(imn, imn, matcher=nanmae, d_range=(-180, 180))

sims = np.stack([sims, masked_sims, nan_sims], axis=0)
plot_multiline(sims, labels=['original', 'masked', 'nan-masked'])
Exemplo n.º 4
0
imgs = []
for imgfile in filenames:
    img = cv.imread(os.path.join(data_path, imgfile))
    imgs.append(cv.cvtColor(img, cv.COLOR_BGR2RGB))

imgs = rgb02nan(imgs)
imgs = nanrgb2grey(imgs)

# get the headings of eahc of the images
sims = rmf(imgs[0], imgs, matcher=nanmae)
headings = np.argmin(sims, axis=1)

# Rotational similarity between the first image and itself
rsims = []
for h in headings:
    rim = rotate(h, imgs[0])
    rsims.append(nanmae(imgs[0], rim))
plt.scatter(headings, rsims, label='in-silica')

minsims = np.min(sims, axis=1)
plt.scatter(headings, minsims, label='actual rotation')

# linking lines
# for i, sim in enumerate(minsims):
#     plt.plot([headings[i], headings[i]], [minsims[i], rsims[i]])

plt.legend()
plt.show()

# masked = np.ma.masked_invalid(imgs[0])
# path = os.path.join(fwd, 'odk-mask.pickle')
Exemplo n.º 5
0
# alternative way to convert to greyscale
greysnaps2 = nanrbg2greyweighted(snaps)

# a = greysnaps2[0]
# nans_imgshow(a)

sims = rmf(testimgs[35], greysnaps[127], matcher=nanmae, d_range=(-180, 180))
save_image('test.png', testimgs[35])
save_image('train.png', greysnaps[127])

index = np.argmin(sims)
deg_range = (-180, 180)
degrees = np.arange(*deg_range)
h = int(degrees[index])
test_rotated = rotate(h, testimgs[35])
save_image('test rotated.png', test_rotated)

plot_multiline(sims, xlabel='Degrees', ylabel='Image Difference')
# plot_3d(sims, show=True)

heat = np.abs(testimgs[35] - greysnaps[127])
plt.imshow(heat, cmap='hot', interpolation='nearest')
plt.show()

deg_range = (-90, 90)
degrees = np.arange(*deg_range)
mindiff = []
best_index = []
heading = []
data = {'best_index': [], 'mindiff': [], 'heading': [], 'rsims': []}
Exemplo n.º 6
0
img = route.get_imgs()[0]

deg_range = (-180, 180)
degrees = np.arange(*deg_range)
sims = []
for i, r in enumerate(degrees):

    fig = plt.figure(figsize=(10, 7))
    plt.suptitle('deg={}'.format(r))
    rows = 3
    cols = 1
    ax = fig.add_subplot(rows, cols, 1)
    ax.set_title('train')
    plt.imshow(img, cmap='gray')
    plt.axis('off')

    ax = fig.add_subplot(rows, cols, 2)
    ax.set_title('test')
    plt.imshow(rotate(r, img), cmap='gray')
    plt.axis('off')

    ax = fig.add_subplot(rows, cols, 3)
    ax.set_title('RMF')
    sims.append(mae(img, rotate(r, img)))
    plt.plot(degrees[:i + 1], sims)
    plt.xlim(-180, 180)

    fig.savefig('{}.png'.format(r + 180))
    plt.close(fig)