Exemplo n.º 1
0
def do_xgboost_blance_sample(X, Y):
    """

    Args:
        X_train:DataFrame, shape(x_index*(1-test_size), feature_number(feature_map)), the features for training
        X_test: DataFrame, shape(x_index*test_size, feature_number(feature_map)), the features for testing
        Y_train: list, the labels for training
        Y_test: list, the labels for testing

    Returns:
        Y_pred: list, the Predicted value of the model

    """
    logging.info('训练结果输出')
    X_train, X_vld, Y_train, Y_vld = train_test_split(X,
                                                      Y,
                                                      test_size=0.2,
                                                      random_state=1)
    xgb_model = xgb.XGBClassifier().fit(X_train,
                                        Y_train,
                                        sample_weight=compute_sample_weight(
                                            "balanced", Y_train))
    Y_pred = xgb_model.predict(X_vld)
    do_metrics(Y_vld, Y_pred)
    return xgb_model
Exemplo n.º 2
0
def dnn_test(X_test, Y_test, model_path, log_path, name):
    """

    Args:
        X_test:
        Y_test:
        save_path:
        name:

    Returns:

    """
    save_log_file(log_path)
    model = load_model(model_path + name + 'model.h5')
    Y_test = to_categorical(Y_test, num_classes=5)
    Y_pred = model.predict(X_test)
    do_metrics(Y_test, Y_pred)
    attack_types = ['normal', 'attacker', 'victim', 'suspicious', 'unknown']
    confusion_matrixs.plot_confusion_matrix(
        np.array(metrics.confusion_matrix(Y_test, Y_pred)),
        classes=attack_types,
        normalize=True,
        title='dnn Normalized confusion matrix')
Exemplo n.º 3
0
if __name__=="__main__":

    log_path = '/home/liyulian/code/CIDDS/repositories'
    save_log_file(log_path)


    ### CIDDS-001
    path = '/home/liyulian/code/CIDDS/sources/utils/data_features_001.csv'

    ### 无样本平衡
    logging.info('使用CIDDS-001数据, 用xgboost完成实验分类,'
                 '无样本平衡, 设置了划分样本的random_state=1, 并且保存模型')

    X_train, X_test, Y_train, Y_test = get_features_FPPB(path)
    Y_pred, model = machine_learnings.do_xgboost(X_train, X_test, Y_train, Y_test)
    do_metrics(Y_test, Y_pred)
    import pickle  # pickle模块

    # 保存Model(注:save文件夹要预先建立,否则会报错)
    with open('repositories/model_001.pickle', 'wb') as f:
        pickle.dump(model, f)

    # ### 无样本平衡
    # logging.info('使用CIDDS-001数据, 用xgboost完成实验分类,'
    #              '无样本平衡')
    #
    # X_train, X_test, Y_train, Y_test = get_features(path)
    # Y_pred = machine_learnings.do_xgboost(X_train, X_test, Y_train, Y_test)
    # do_metrics(Y_test, Y_pred)

    """