Exemplo n.º 1
0
def test_oracle_moves_whitespace(en_vocab):
    words = ["production", "\n", "of", "Northrop", "\n", "Corp.", "\n", "'s", "radar"]
    biluo_tags = ["O", "O", "O", "B-ORG", None, "I-ORG", "L-ORG", "O", "O"]

    doc = Doc(en_vocab, words=words)
    gold = GoldParse(doc, words=words, entities=biluo_tags)

    moves = BiluoPushDown(en_vocab.strings)
    move_types = ("M", "B", "I", "L", "U", "O")
    for tag in biluo_tags:
        if tag is None:
            continue
        elif tag == "O":
            moves.add_action(move_types.index("O"), "")
        else:
            action, label = tag.split("-")
            moves.add_action(move_types.index(action), label)
    moves.preprocess_gold(gold)
    moves.get_oracle_sequence(doc, gold)
Exemplo n.º 2
0
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
          seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
          beam_width=1, verbose=False,
          use_orig_arc_eager=False):
    dep_model_dir = path.join(model_dir, 'deps')
    ner_model_dir = path.join(model_dir, 'ner')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(ner_model_dir):
        shutil.rmtree(ner_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(ner_model_dir)
    os.mkdir(pos_model_dir)

    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
                 labels=ArcEager.get_labels(gold_tuples),
                 beam_width=beam_width)
    Config.write(ner_model_dir, 'config', features='ner', seed=seed,
                 labels=BiluoPushDown.get_labels(gold_tuples),
                 beam_width=0)

    if n_sents > 0:
        gold_tuples = gold_tuples[:n_sents]

    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
    nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for raw_text, sents in gold_tuples:
            if gold_preproc:
                raw_text = None
            else:
                sents = _merge_sents(sents)
            for annot_tuples, ctnt in sents:
                if len(annot_tuples[1]) == 1:
                    continue
                score_model(scorer, nlp, raw_text, annot_tuples,
                            verbose=verbose if itn >= 2 else False)
                if raw_text is None:
                    words = add_noise(annot_tuples[1], corruption_level)
                    tokens = nlp.tokenizer.tokens_from_list(words)
                else:
                    raw_text = add_noise(raw_text, corruption_level)
                    tokens = nlp.tokenizer(raw_text)
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples, make_projective=True)
                if not gold.is_projective:
                    raise Exception(
                        "Non-projective sentence in training, after we should "
                        "have enforced projectivity: %s" % annot_tuples
                    )
                loss += nlp.parser.train(tokens, gold)
                nlp.entity.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
                                                   scorer.tags_acc,
                                                   scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
Exemplo n.º 3
0
def test_oracle_moves_missing_B(en_vocab):
    words = ["B", "52", "Bomber"]
    biluo_tags = [None, None, "L-PRODUCT"]

    doc = Doc(en_vocab, words=words)
    gold = GoldParse(doc, words=words, entities=biluo_tags)

    moves = BiluoPushDown(en_vocab.strings)
    move_types = ("M", "B", "I", "L", "U", "O")
    for tag in biluo_tags:
        if tag is None:
            continue
        elif tag == "O":
            moves.add_action(move_types.index("O"), "")
        else:
            action, label = tag.split("-")
            moves.add_action(move_types.index("B"), label)
            moves.add_action(move_types.index("I"), label)
            moves.add_action(move_types.index("L"), label)
            moves.add_action(move_types.index("U"), label)
    moves.preprocess_gold(gold)
    moves.get_oracle_sequence(doc, gold)
Exemplo n.º 4
0
def tsys(vocab, entity_types):
    actions = BiluoPushDown.get_actions(entity_types=entity_types)
    return BiluoPushDown(vocab.strings, actions)
Exemplo n.º 5
0
def train(Language, gold_tuples, model_dir, n_iter=15, feat_set=u'basic',
          seed=0, gold_preproc=False, n_sents=0, corruption_level=0,
          beam_width=1, verbose=False,
          use_orig_arc_eager=False, pseudoprojective=False):
    dep_model_dir = path.join(model_dir, 'deps')
    ner_model_dir = path.join(model_dir, 'ner')
    pos_model_dir = path.join(model_dir, 'pos')
    if path.exists(dep_model_dir):
        shutil.rmtree(dep_model_dir)
    if path.exists(ner_model_dir):
        shutil.rmtree(ner_model_dir)
    if path.exists(pos_model_dir):
        shutil.rmtree(pos_model_dir)
    os.mkdir(dep_model_dir)
    os.mkdir(ner_model_dir)
    os.mkdir(pos_model_dir)

    if pseudoprojective:
        # preprocess training data here before ArcEager.get_labels() is called
        gold_tuples = PseudoProjectivity.preprocess_training_data(gold_tuples)

    Config.write(dep_model_dir, 'config', features=feat_set, seed=seed,
                 labels=ArcEager.get_labels(gold_tuples),
                 beam_width=beam_width,projectivize=pseudoprojective)
    Config.write(ner_model_dir, 'config', features='ner', seed=seed,
                 labels=BiluoPushDown.get_labels(gold_tuples),
                 beam_width=0)

    if n_sents > 0:
        gold_tuples = gold_tuples[:n_sents]

    nlp = Language(data_dir=model_dir, tagger=False, parser=False, entity=False)
    if nlp.lang == 'de':
        nlp.vocab.morphology.lemmatizer = lambda string,pos: set([string])
    nlp.tagger = Tagger.blank(nlp.vocab, Tagger.default_templates())
    nlp.parser = Parser.from_dir(dep_model_dir, nlp.vocab.strings, ArcEager)
    nlp.entity = Parser.from_dir(ner_model_dir, nlp.vocab.strings, BiluoPushDown)
    print("Itn.\tP.Loss\tUAS\tNER F.\tTag %\tToken %")
    for itn in range(n_iter):
        scorer = Scorer()
        loss = 0
        for raw_text, sents in gold_tuples:
            if gold_preproc:
                raw_text = None
            else:
                sents = _merge_sents(sents)
            for annot_tuples, ctnt in sents:
                if len(annot_tuples[1]) == 1:
                    continue
                score_model(scorer, nlp, raw_text, annot_tuples,
                            verbose=verbose if itn >= 2 else False)
                if raw_text is None:
                    words = add_noise(annot_tuples[1], corruption_level)
                    tokens = nlp.tokenizer.tokens_from_list(words)
                else:
                    raw_text = add_noise(raw_text, corruption_level)
                    tokens = nlp.tokenizer(raw_text)
                nlp.tagger(tokens)
                gold = GoldParse(tokens, annot_tuples)
                if not gold.is_projective:
                    raise Exception("Non-projective sentence in training: %s" % annot_tuples[1])
                loss += nlp.parser.train(tokens, gold)
                nlp.entity.train(tokens, gold)
                nlp.tagger.train(tokens, gold.tags)
        random.shuffle(gold_tuples)
        print('%d:\t%d\t%.3f\t%.3f\t%.3f\t%.3f' % (itn, loss, scorer.uas, scorer.ents_f,
                                                   scorer.tags_acc,
                                                   scorer.token_acc))
    print('end training')
    nlp.end_training(model_dir)
    print('done')
Exemplo n.º 6
0
def tsys(vocab, entity_types):
    actions = BiluoPushDown.get_actions(entity_types=entity_types)
    return BiluoPushDown(vocab.strings, actions)