Exemplo n.º 1
0
 def __init__(self, s=None, v=None, check=True, norm=True):
     """        
     A unit quaternion is one for which M{s^2+vx^2+vy^2+vz^2 = 1}.
     A quaternion can be considered as a rotation about a vector in space where
     q = cos (theta/2) sin(theta/2) <vx vy vz>
     where <vx vy vz> is a unit vector.
     :param s: scalar
     :param v: vector
     """
     if s is None and v is None:
         self.data = [ quat.qone() ]
         
     elif argcheck.isscalar(s) and argcheck.isvector(v,3):
         self.data = [ np.r_[s, argcheck.getvector(v)] ]
         
     elif argcheck.isvector(s,4):
         self.data = [ argcheck.getvector(s) ]
         
     elif type(s) is list:
         if check:
             assert argcheck.isvectorlist(s,4), 'list must comprise 4-vectors'
         self.data = s
     
     elif isinstance(s, np.ndarray) and s.shape[1] == 4:
         self.data = [x for x in s]
         
     else:
         raise ValueError('bad argument to Quaternion constructor')
Exemplo n.º 2
0
    def __init__(self, s: Any = None, v=None, check=True, norm=True):
        """
        A zero quaternion is one for which M{s^2+vx^2+vy^2+vz^2 = 1}.
        A quaternion can be considered as a rotation about a vector in space where
        q = cos (theta/2) sin(theta/2) <vx vy vz>
        where <vx vy vz> is a unit vector.
        :param s: scalar
        :param v: vector
        """
        super().__init__()

        if s is None and v is None:
            self.data = [np.array([0, 0, 0, 0])]

        elif argcheck.isscalar(s) and argcheck.isvector(v, 3):
            self.data = [np.r_[s, argcheck.getvector(v)]]

        elif argcheck.isvector(s, 4):
            self.data = [argcheck.getvector(s)]

        elif isinstance(s, list):
            if isinstance(s[0], np.ndarray):
                if check:
                    assert argcheck.isvectorlist(
                        s, 4), 'list must comprise 4-vectors'
                self.data = s
            elif isinstance(s[0], self.__class__):
                # possibly a list of objects of same type
                assert all(map(lambda x: isinstance(x, self.__class__),
                               s)), 'all elements of list must have same type'
                self.data = [x._A for x in s]
            else:
                raise ValueError('incorrect list')

        elif isinstance(s, np.ndarray) and s.shape[1] == 4:
            self.data = [x for x in s]

        elif isinstance(s, Quaternion):
            self.data = s.data

        else:
            raise ValueError('bad argument to Quaternion constructor')
Exemplo n.º 3
0
 def __init__(self, s=None, v=None, norm=True, check=True):
     """
     Construct a UnitQuaternion object
     
     :arg norm: explicitly normalize the quaternion [default True]
     :type norm: bool
     :arg check: explicitly check dimension of passed lists [default True]
     :type check: bool
     :return: new unit uaternion
     :rtype: UnitQuaternion
     :raises: ValueError
     
     Single element quaternion:
         
     - ``UnitQuaternion()`` constructs the identity quaternion 1<0,0,0>
     - ``UnitQuaternion(s, v)`` constructs a unit quaternion with specified
       real ``s`` and ``v`` vector parts. ``v`` is a 3-vector given as a 
       list, tuple, numpy.ndarray
     - ``UnitQuaternion(v)`` constructs a unit quaternion with specified 
       elements from ``v`` which is a 4-vector given as a list, tuple, numpy.ndarray
     - ``UnitQuaternion(R)`` constructs a unit quaternion from an orthonormal
       rotation matrix given as a 3x3 numpy.ndarray. If ``check`` is True
       test the matrix for orthogonality.
     
     Multi-element quaternion:
         
     - ``UnitQuaternion(V)`` constructs a unit quaternion list with specified 
       elements from ``V`` which is an Nx4 numpy.ndarray, each row is a
       quaternion.  If ``norm`` is True explicitly normalize each row.
     - ``UnitQuaternion(L)`` constructs a unit quaternion list from a list
       of 4-element numpy.ndarrays.  If ``check`` is True test each element
       of the list is a 4-vector. If ``norm`` is True explicitly normalize 
       each vector.
     """
     
     if s is None and v is None:
         self.data = [ quat.eye() ]
         
     elif argcheck.isscalar(s) and argcheck.isvector(v,3):
         q = np.r_[ s, argcheck.getvector(v) ]
         if norm:
             q = quat.unit(q)
         self.data = [q]
         
     elif argcheck.isvector(s,4):
         print('uq constructor 4vec')
         q = argcheck.getvector(s)
         # if norm:
         #     q = quat.unit(q)
         print(q)
         self.data = [q]
         
     elif type(s) is list:
         if check:
             assert argcheck.isvectorlist(s,4), 'list must comprise 4-vectors'
         if norm:
             s = [quat.unit(q) for q in s]
         self.data = s
     
     elif isinstance(s, np.ndarray) and s.shape[1] == 4:
         if norm:
             self.data = [quat.norm(x) for x in s]
         else:
             self.data = [x for x in s]
         
     elif tr.isrot(s, check=check):
         self.data = [ quat.r2q(s) ]
         
     else:
         raise ValueError('bad argument to UnitQuaternion constructor')
Exemplo n.º 4
0
    def __init__(self, s: Any = None, v=None, norm=True, check=True):
        """
        Construct a UnitQuaternion object

        :arg norm: explicitly normalize the quaternion [default True]
        :type norm: bool
        :arg check: explicitly check dimension of passed lists [default True]
        :type check: bool
        :return: new unit uaternion
        :rtype: UnitQuaternion
        :raises: ValueError

        Single element quaternion:

        - ``UnitQuaternion()`` constructs the identity quaternion 1<0,0,0>
        - ``UnitQuaternion(s, v)`` constructs a unit quaternion with specified
          real ``s`` and ``v`` vector parts. ``v`` is a 3-vector given as a
          list, tuple, numpy.ndarray
        - ``UnitQuaternion(v)`` constructs a unit quaternion with specified
          elements from ``v`` which is a 4-vector given as a list, tuple, numpy.ndarray
        - ``UnitQuaternion(R)`` constructs a unit quaternion from an orthonormal
          rotation matrix given as a 3x3 numpy.ndarray. If ``check`` is True
          test the matrix for orthogonality.
        - ``UnitQuaternion(X)`` constructs a unit quaternion from the rotational
          part of ``X`` which is SO3 or SE3 instance.  If len(X) > 1 then
          the resulting unit quaternion is of the same length.

        Multi-element quaternion:

        - ``UnitQuaternion(V)`` constructs a unit quaternion list with specified
          elements from ``V`` which is an Nx4 numpy.ndarray, each row is a
          quaternion.  If ``norm`` is True explicitly normalize each row.
        - ``UnitQuaternion(L)`` constructs a unit quaternion list from a list
          of 4-element numpy.ndarrays.  If ``check`` is True test each element
          of the list is a 4-vector. If ``norm`` is True explicitly normalize
          each vector.
        """
        super().__init__()

        if s is None and v is None:
            self.data = [quat.eye()]

        elif argcheck.isscalar(s) and argcheck.isvector(v, 3):
            # UnitQuaternion(s, v)   s is scalar, v is 3-vector
            q = np.r_[s, argcheck.getvector(v)]
            if norm:
                q = quat.unit(q)
            self.data = [q]

        elif argcheck.isvector(s, 4):
            # UnitQuaternion(q)   q is 4-vector
            q = argcheck.getvector(s)
            if norm:
                s = quat.unit(s)
            self.data = [s]

        elif isinstance(s, list):
            # UnitQuaternion(list)
            if isinstance(s[0], np.ndarray):
                # list of 4-vectors
                if check:
                    assert argcheck.isvectorlist(
                        s, 4), 'list must comprise 4-vectors'
                self.data = s
            elif isinstance(s[0], p3d.SO3):
                # list of SO3/SE3
                self.data = [quat.r2q(x.R) for x in s]

            elif isinstance(s[0], self.__class__):
                # possibly a list of objects of same type
                assert all(map(lambda x: isinstance(x, type(self)),
                               s)), 'all elements of list must have same type'
                self.data = [x._A for x in s]
            else:
                raise ValueError('incorrect list')

        elif isinstance(s, p3d.SO3):
            # UnitQuaternion(x) x is SO3 or SE3
            self.data = [quat.r2q(x.R) for x in s]

        elif isinstance(s, np.ndarray) and tr.isrot(s, check=check):
            # UnitQuaternion(R) R is 3x3 rotation matrix
            self.data = [quat.r2q(s)]

        elif isinstance(s, np.ndarray) and tr.ishom(s, check=check):
            # UnitQuaternion(T) T is 4x4 homogeneous transformation matrix
            self.data = [quat.r2q(tr.t2r(s))]

        elif isinstance(s, np.ndarray) and s.shape[1] == 4:
            if norm:
                self.data = [quat.qnorm(x) for x in s]
            else:
                self.data = [x for x in s]

        elif isinstance(s, UnitQuaternion):
            # UnitQuaternion(Q) Q is a UnitQuaternion instance, clone it
            self.data = s.data

        else:
            raise ValueError('bad argument to UnitQuaternion constructor')