Exemplo n.º 1
0
def block_inside(i, o, index, norm_cfg):
    mn = spconv.SparseSequential()
    reps = 2

    mn.add(build_norm_layer(norm_cfg, i)[1])
    mn.add(nn.ReLU())
    mn.add(SubMConv3d(i, i, 3, indice_key="su3_{}".format(index), bias=False))
    mn.add(build_norm_layer(norm_cfg, i)[1])
    mn.add(nn.ReLU())
    mn.add(SubMConv3d(i, o, 3, indice_key="su3_{}".format(index), bias=False))
    # mn.add(build_norm_layer(norm_cfg, o)[1])
    # mn.add(nn.ReLU())

    return mn
Exemplo n.º 2
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="SASpMiddleResNetFHD",
                 **kwargs):
        super(SASpMiddleResNetFHD, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        # input: # [1600, 1200, 41]
        self.middle_conv1 = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=False,
                       indice_key="res0"),
            build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseBasicBlock(16, 16, norm_cfg=norm_cfg, indice_key="res0"),
            SparseBasicBlock(16, 16, norm_cfg=norm_cfg, indice_key="res0"),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=False),  # [1600, 1200, 41] -> [800, 600, 21]
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SparseBasicBlock(32, 32, norm_cfg=norm_cfg, indice_key="res1"),
            SparseBasicBlock(32, 32, norm_cfg=norm_cfg, indice_key="res1"),
        )
        self.middle_conv2 = spconv.SparseSequential(
            SparseConv3d(32, 64, 3, 2, padding=1,
                         bias=False),  # [800, 600, 21] -> [400, 300, 11]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SparseBasicBlock(64, 64, norm_cfg=norm_cfg, indice_key="res2"),
            SparseBasicBlock(64, 64, norm_cfg=norm_cfg, indice_key="res2"),
        )
        self.middle_conv3 = spconv.SparseSequential(
            SparseConv3d(64, 128, 3, 2, padding=[0, 1, 1],
                         bias=False),  # [400, 300, 11] -> [200, 150, 5]
            build_norm_layer(norm_cfg, 128)[1],
            nn.ReLU(),
            SparseBasicBlock(128, 128, norm_cfg=norm_cfg, indice_key="res3"),
            SparseBasicBlock(128, 128, norm_cfg=norm_cfg, indice_key="res3"),
        )
        self.end_conv = spconv.SparseSequential(
            SparseConv3d(128, 128, (3, 1, 1), (2, 1, 1),
                         bias=False),  # [200, 150, 5] -> [200, 150, 2]
            build_norm_layer(norm_cfg, 128)[1],
            nn.ReLU(),
        )

        self.point_fc = nn.Linear(224, 64, bias=False)
        self.point_cls = nn.Linear(64, 1, bias=False)
        self.point_reg = nn.Linear(64, 3, bias=False)
Exemplo n.º 3
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="SpMiddleFHD",
                 **kwargs):
        super(SpMiddleFHDNobn, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        self.middle_conv = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=True,
                       indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SubMConv3d(16, 16, 3, bias=True, indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=True),  # [1600, 1200, 41] -> [800, 600, 21]
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SparseConv3d(32, 64, 3, 2, padding=1,
                         bias=True),  # [800, 600, 21] -> [400, 300, 11]
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SparseConv3d(64, 64, 3, 2, padding=[0, 1, 1],
                         bias=True),  # [400, 300, 11] -> [200, 150, 5]
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SparseConv3d(64, 64, (3, 1, 1), (2, 1, 1),
                         bias=True),  # [200, 150, 5] -> [200, 150, 2]
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
        )
Exemplo n.º 4
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="SpMiddleFHD",
                 **kwargs):
        super(SpMiddleFHD, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        self.middle_conv = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=False,
                       indice_key="subm0"),
            build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SubMConv3d(16, 16, 3, bias=False, indice_key="subm0"),
            build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=False),  # [41, 1600, 1408] -> [21, 800, 704]
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=False),
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=False),
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SparseConv3d(32, 64, 3, 2, padding=1,
                         bias=False),  # [21, 800, 704] -> [11, 400, 352]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SparseConv3d(64, 64, 3, 2, padding=[0, 1, 1],
                         bias=False),  # [11, 400, 352] -> [5, 200, 176]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm3", bias=False),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SparseConv3d(64, 64, (3, 1, 1), (2, 1, 1),
                         bias=False),  # [5, 200, 176] -> [2, 200, 176]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
        )
Exemplo n.º 5
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="RCNNSpMiddleFHD",
                 **kwargs):
        super(RCNNSpMiddleFHD, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        self.middle_conv = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=False,
                       indice_key="subm0"),
            build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SubMConv3d(16, 16, 3, bias=False, indice_key="subm0"),
            build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=False),  # [32, 80, 41] -> [16, 40, 21]
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, bias=False, indice_key="subm1"),
            build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            # SubMConv3d(32, 32, 3, bias=False, indice_key="subm1"),
            # build_norm_layer(norm_cfg, 32)[1],
            # nn.ReLU(),
            SparseConv3d(32, 64, 3, 2, bias=False,
                         padding=1),  # [16, 40, 21] -> [8, 20, 11]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, bias=False, indice_key="subm2"),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            # SubMConv3d(64, 64, 3, bias=False, indice_key="subm2"),
            # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            # SubMConv3d(64, 64, 3, bias=False, indice_key="subm2"),
            # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            SparseConv3d(64, 64, 3, 2, bias=False,
                         padding=[1, 1, 0]),  # [8, 20, 11] -> [4, 10, 5]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, bias=False, indice_key="subm3"),
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            # SubMConv3d(64, 64, 3, bias=False, indice_key="subm3"),
            # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            # SubMConv3d(64, 64, 3, bias=False, indice_key="subm3"),
            # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            SparseConv3d(64, 64, (1, 1, 3), (1, 1, 2),
                         bias=False),  # [4, 10, 5] -> [4, 10, 2]
            build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
        )
Exemplo n.º 6
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="SpMiddleResNetFHD",
                 n_channels=[16, 32, 64, 128],
                 **kwargs):
        super(SpMiddleResNetFHDv2, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        # input: # [1024, 1024, 56]
        self.middle_conv = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       n_channels[0],
                       3,
                       bias=False,
                       indice_key="res0"),
            build_norm_layer(norm_cfg, n_channels[0])[1],
            nn.ReLU(),
            SparseBasicBlock(n_channels[0],
                             n_channels[0],
                             norm_cfg=norm_cfg,
                             indice_key="res0"),
            SparseBasicBlock(n_channels[0],
                             n_channels[0],
                             norm_cfg=norm_cfg,
                             indice_key="res0"),
            SparseConv3d(n_channels[0],
                         n_channels[1],
                         3,
                         2,
                         padding=1,
                         bias=False),  # [1024, 1024, 56] -> [512, 512, 28]
            build_norm_layer(norm_cfg, n_channels[1])[1],
            nn.ReLU(),
            SparseBasicBlock(n_channels[1],
                             n_channels[1],
                             norm_cfg=norm_cfg,
                             indice_key="res1"),
            SparseBasicBlock(n_channels[1],
                             n_channels[1],
                             norm_cfg=norm_cfg,
                             indice_key="res1"),
            # SparseBasicBlock(n_channels[1], n_channels[1], norm_cfg=norm_cfg, indice_key="res1"),
            SparseConv3d(n_channels[1],
                         n_channels[2],
                         3,
                         2,
                         padding=1,
                         bias=False),  # [512, 512, 28] -> [256, 256, 14]
            build_norm_layer(norm_cfg, n_channels[2])[1],
            nn.ReLU(),
            SparseBasicBlock(n_channels[2],
                             n_channels[2],
                             norm_cfg=norm_cfg,
                             indice_key="res2"),
            SparseBasicBlock(n_channels[2],
                             n_channels[2],
                             norm_cfg=norm_cfg,
                             indice_key="res2"),
            # SparseBasicBlock(n_channels[2], n_channels[2], norm_cfg=norm_cfg, indice_key="res2"),
            SparseConv3d(n_channels[2],
                         n_channels[3],
                         3,
                         2,
                         padding=1,
                         bias=False),  # [256, 256, 14] -> [128, 128, 7]
            build_norm_layer(norm_cfg, n_channels[3])[1],
            nn.ReLU(),
            SparseBasicBlock(n_channels[3],
                             n_channels[3],
                             norm_cfg=norm_cfg,
                             indice_key="res3"),
            SparseBasicBlock(n_channels[3],
                             n_channels[3],
                             norm_cfg=norm_cfg,
                             indice_key="res3"),
            # SparseBasicBlock(n_channels[3], n_channels[3], norm_cfg=norm_cfg, indice_key="res3"),
            SparseConv3d(n_channels[3],
                         n_channels[3], (3, 1, 1), (2, 1, 1),
                         bias=False),  # [128, 128, 7] -> [64, 64, 3]
            build_norm_layer(norm_cfg, n_channels[3])[1],
            nn.ReLU(),
        )
Exemplo n.º 7
0
    def __init__(self,
                 num_input_features=128,
                 num_filters_down=[16, 32, 64, 64, 96, 128],
                 dimension_feature_map=[128, 128, 128, 128],
                 norm_cfg=None,
                 name="tDBN_2",
                 **kwargs):
        super(tDBN_2_bv, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        middle_layers = spconv.SparseSequential()

        input_filters_layers = num_filters_down[:
                                                4]  # feature channels in the raw data
        num_filter_fpn = num_filters_down[-4:]
        dimension_feature_map = dimension_feature_map
        dimension_kernel_size = [15, 7, 3, 1]

        # the main network framework
        self.block_input = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=True,
                       indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SubMConv3d(16, 16, 3, bias=True, indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=True),  # [1600, 1200, 41] -> [800, 600, 21]
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SparseConv3d(32, 64, 3, 2, padding=[0, 2, 2],
                         bias=True),  # [800, 600, 21] -> [400, 300, 11]
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            # SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            # SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
            # SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # # build_norm_layer(norm_cfg, 64)[1],
            # nn.ReLU(),
        )

        # self.block0 = middle_layers
        m = spconv.SparseSequential()

        reps = 2
        # residual_use = False # using residual block or not
        residual_use = True  # using residual block or not
        _index = 0
        for _ in range(reps):
            block(m,
                  num_filter_fpn[0],
                  num_filter_fpn[0],
                  index=_index,
                  residual_blocks=residual_use,
                  norm_cfg=norm_cfg)

        self.x0_in = m

        for k in range(1, 4):
            m = spconv.SparseSequential()
            m.add(
                SparseConv3d(num_filter_fpn[k - 1],
                             num_filter_fpn[k],
                             3,
                             stride=2,
                             bias=False,
                             indice_key="conv{}".format(k)))
            m.add(build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
            m.add(nn.ReLU())

            for _ in range(reps):
                if k == 4:
                    block(m,
                          num_filter_fpn[k],
                          num_filter_fpn[k],
                          index=k,
                          dimension=2,
                          residual_blocks=residual_use,
                          norm_cfg=norm_cfg)
                else:
                    block(m,
                          num_filter_fpn[k],
                          num_filter_fpn[k],
                          index=k,
                          dimension=3,
                          residual_blocks=residual_use,
                          norm_cfg=norm_cfg)
            if k == 1:
                self.x1_in = m
            elif k == 2:
                self.x2_in = m
            elif k == 3:
                self.x3_in = m

        for k in range(2, -1, -1):
            m = spconv.SparseSequential()
            m.add(
                SparseInverseConv3d(num_filter_fpn[k + 1],
                                    num_filter_fpn[k],
                                    3,
                                    "conv{}".format(k + 1),
                                    bias=False)  # no stride inputs
            )
            m.add(build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
            m.add(nn.ReLU())

            if k == 2:
                self.upsample32 = m
            elif k == 1:
                self.upsample21 = m
            elif k == 0:
                self.upsample10 = m

            m = spconv.SparseSequential()
            m.add(JoinTable())

            for i in range(reps):
                block(m,
                      num_filter_fpn[k] * (2 if i == 0 else 1),
                      num_filter_fpn[k],
                      index=(k + 100),
                      residual_blocks=residual_use,
                      norm_cfg=norm_cfg)

            if k == 2:
                self.concate2 = m
            elif k == 1:
                self.concate1 = m
            elif k == 0:
                self.concate0 = m

            m = spconv.SparseSequential()

            m.add(
                SparseConv3d(num_filter_fpn[k],
                             dimension_feature_map[k],
                             (dimension_kernel_size[k], 1, 1), (2, 1, 1),
                             bias=False))
            m.add(build_norm_layer(norm_cfg, dimension_feature_map[k])[1])
            m.add(nn.ReLU())

            if k == 2:
                self.feature_map2 = m
            elif k == 1:
                self.feature_map1 = m
            elif k == 0:
                self.feature_map0 = m
Exemplo n.º 8
0
    def __init__(self,
                 num_input_features=4,
                 num_filters_down=[16, 32, 64, 64, 96, 128],
                 dimension_feature_map=[128, 128, 128, 128],
                 norm_cfg=None,
                 name="tDBN_1",
                 **kwargs):
        super(tDBN_1_bv, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        middle_layers = spconv.SparseSequential()

        input_filters_layers = num_filters_down[:
                                                4]  # feature channels in the raw data
        num_filter_fpn = num_filters_down[-4:]
        dimension_feature_map = dimension_feature_map
        dimension_kernel_size = [15, 7, 3, 1]

        self.block0 = spconv.SparseSequential(
            SubMConv3d(num_input_features,
                       16,
                       3,
                       bias=True,
                       indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SubMConv3d(16, 16, 3, bias=True, indice_key="subm0"),
            # build_norm_layer(norm_cfg, 16)[1],
            nn.ReLU(),
            SparseConv3d(16, 32, 3, 2, padding=1,
                         bias=True),  # [1600, 1200, 41] -> [800, 600, 21]
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SubMConv3d(32, 32, 3, indice_key="subm1", bias=True),
            # build_norm_layer(norm_cfg, 32)[1],
            nn.ReLU(),
            SparseConv3d(32, 64, 3, 2, padding=[0, 2, 2],
                         bias=True),  # [800, 600, 21] -> [400, 300, 11]
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
            SubMConv3d(64, 64, 3, indice_key="subm2", bias=True),
            # build_norm_layer(norm_cfg, 64)[1],
            nn.ReLU(),
        )

        # self.block0 = middle_layers
        m = spconv.SparseSequential()

        m.add(
            SparseConv3d(num_filter_fpn[0],
                         dimension_feature_map[0],
                         (dimension_kernel_size[0], 1, 1), (2, 1, 1),
                         bias=False))
        m.add(build_norm_layer(norm_cfg, dimension_feature_map[0])[1])
        m.add(nn.ReLU())
        # dense function add later
        self.feature_map0 = m

        reps = 2
        residual_use = True  # using residual block or not

        m = spconv.SparseSequential()
        ## block1-3 and feature map1-3
        for k in range(1, 4):
            m.add(
                SparseConv3d(num_filter_fpn[k - 1],
                             num_filter_fpn[k],
                             3,
                             2,
                             bias=False))
            m.add(build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
            m.add(nn.ReLU())
            # dense function add later

            for _ in range(reps):
                block(m,
                      num_filter_fpn[k],
                      num_filter_fpn[k],
                      index=k,
                      residual_blocks=residual_use,
                      norm_cfg=norm_cfg)

            if k == 1:
                self.block1 = m
            elif k == 2:
                self.block2 = m
            elif k == 3:
                self.block3 = m

            m = spconv.SparseSequential()

            m.add(
                SparseConv3d(num_filter_fpn[k],
                             dimension_feature_map[k],
                             (dimension_kernel_size[k], 1, 1), (2, 1, 1),
                             bias=False))
            m.add(build_norm_layer(norm_cfg, dimension_feature_map[k])[1])
            m.add(nn.ReLU())
            # adding dense in forward step

            if k == 1:
                self.feature_map1 = m
            elif k == 2:
                self.feature_map2 = m
            elif k == 3:
                self.feature_map3 = None  # convert the sparse data into dense one
                # Sequential(scn.SparseToDense(3, dimension_feature_map[k]))  ## last one is the 2D instead of 3D

            m = spconv.SparseSequential()
Exemplo n.º 9
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="tDBN_2",
                 **kwargs):
        super(tDBN_2, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        middle_layers = spconv.SparseSequential()

        num_filter_fpn = [32, 64, 96, 128]
        dimension_feature_map = [128, 128, 128, 128]
        dimension_kernel_size = [15, 7, 3, 1]

        # the main network framework
        m = spconv.SparseSequential()
        # --------------------------------------
        ## block1 and feature map 0, convert from voxel into 3D tensor
        # --------------------------------------
        for i, o in [[num_input_features, num_filter_fpn[0]]
                     ]:  # , [num_filter_fpn[0], num_filter_fpn[0]]]:
            m.add(SubMConv3d(i, o, 3, indice_key="subm_0", bias=False))
            m.add(build_norm_layer(norm_cfg, o)[1])
            m.add(nn.ReLU())

        self.block_input = m
        m = spconv.SparseSequential()

        reps = 2
        # residual_use = False # using residual block or not
        residual_use = True  # using residual block or not
        _index = 0
        for _ in range(reps):
            block(m,
                  num_filter_fpn[0],
                  num_filter_fpn[0],
                  index=_index,
                  residual_blocks=residual_use,
                  norm_cfg=norm_cfg)

        self.x0_in = m

        for k in range(1, 4):
            m = spconv.SparseSequential()
            m.add(
                SparseConv3d(num_filter_fpn[k - 1],
                             num_filter_fpn[k],
                             3,
                             stride=2,
                             bias=False,
                             indice_key="conv{}".format(k)))
            m.add(build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
            m.add(nn.ReLU())

            for _ in range(reps):
                if k == 4:
                    block(m,
                          num_filter_fpn[k],
                          num_filter_fpn[k],
                          index=k,
                          dimension=2,
                          residual_blocks=residual_use,
                          norm_cfg=norm_cfg)
                else:
                    block(m,
                          num_filter_fpn[k],
                          num_filter_fpn[k],
                          index=k,
                          dimension=3,
                          residual_blocks=residual_use,
                          norm_cfg=norm_cfg)
            if k == 1:
                self.x1_in = m
            elif k == 2:
                self.x2_in = m
            elif k == 3:
                self.x3_in = m

        for k in range(2, -1, -1):
            m = spconv.SparseSequential()
            m.add(
                SparseInverseConv3d(num_filter_fpn[k + 1],
                                    num_filter_fpn[k],
                                    3,
                                    "conv{}".format(k + 1),
                                    bias=False)  # no stride inputs
            )
            m.add(build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
            m.add(nn.ReLU())

            if k == 2:
                self.upsample32 = m
            elif k == 1:
                self.upsample21 = m
            elif k == 0:
                self.upsample10 = m

            m = spconv.SparseSequential()
            m.add(JoinTable())

            for i in range(reps):
                block(m,
                      num_filter_fpn[k] * (2 if i == 0 else 1),
                      num_filter_fpn[k],
                      index=(k + 100),
                      residual_blocks=residual_use,
                      norm_cfg=norm_cfg)

            if k == 2:
                self.concate2 = m
            elif k == 1:
                self.concate1 = m
            elif k == 0:
                self.concate0 = m

            m = spconv.SparseSequential()

            m.add(
                SparseConv3d(num_filter_fpn[k],
                             dimension_feature_map[k],
                             (dimension_kernel_size[k], 1, 1), (2, 1, 1),
                             bias=False))
            m.add(build_norm_layer(norm_cfg, dimension_feature_map[k])[1])
            m.add(nn.ReLU())

            if k == 2:
                self.feature_map2 = m
            elif k == 1:
                self.feature_map1 = m
            elif k == 0:
                self.feature_map0 = m
Exemplo n.º 10
0
    def __init__(self,
                 num_input_features=128,
                 norm_cfg=None,
                 name="tDBN_1",
                 **kwargs):
        super(tDBN_1, self).__init__()
        self.name = name

        self.dcn = None
        self.zero_init_residual = False

        if norm_cfg is None:
            norm_cfg = dict(type="BN1d", eps=1e-3, momentum=0.01)

        middle_layers = spconv.SparseSequential()

        num_filter_fpn = [32, 64, 96, 128]
        dimension_feature_map = [128, 128, 128, 128]
        dimension_kernel_size = [15, 7, 3, 1]

        for i, o in [[num_input_features, num_filter_fpn[0]]]:
            middle_layers.add(
                SubMConv3d(i, o, 3, indice_key="subm_0", bias=False))
            middle_layers.add(build_norm_layer(norm_cfg, o)[1])
            middle_layers.add(nn.ReLU())

        self.block0 = middle_layers
        middle_layers = spconv.SparseSequential()

        middle_layers.add(
            SparseConv3d(num_filter_fpn[0],
                         dimension_feature_map[0],
                         (dimension_kernel_size[0], 1, 1), (2, 1, 1),
                         bias=False))
        middle_layers.add(
            build_norm_layer(norm_cfg, dimension_feature_map[0])[1])
        middle_layers.add(nn.ReLU())
        # dense function add later
        self.feature_map0 = middle_layers

        reps = 2
        residual_use = True

        middle_layers = spconv.SparseSequential()
        ## block1-3 and feature map1-3
        for k in range(1, 4):
            if k == 3:
                middle_layers.add(
                    SparseConv3d(num_filter_fpn[k - 1],
                                 num_filter_fpn[k],
                                 3,
                                 2,
                                 bias=False))
                middle_layers.add(
                    build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
                middle_layers.add(nn.ReLU())
                # dense function add later
            else:
                middle_layers.add(
                    SparseConv3d(num_filter_fpn[k - 1],
                                 num_filter_fpn[k],
                                 3,
                                 2,
                                 bias=False))
                middle_layers.add(
                    build_norm_layer(norm_cfg, num_filter_fpn[k])[1])
                middle_layers.add(nn.ReLU())

            # 128*7*199*175 recurrent

            for _ in range(reps):
                block(middle_layers,
                      num_filter_fpn[k],
                      num_filter_fpn[k],
                      index=k,
                      residual_blocks=residual_use,
                      norm_cfg=norm_cfg)

            if k == 1:
                self.block1 = middle_layers
            elif k == 2:
                self.block2 = middle_layers
            elif k == 3:
                self.block3 = middle_layers

            middle_layers = spconv.SparseSequential()

            middle_layers.add(
                SparseConv3d(num_filter_fpn[k],
                             dimension_feature_map[k],
                             (dimension_kernel_size[k], 1, 1), (2, 1, 1),
                             bias=False))
            middle_layers.add(
                build_norm_layer(norm_cfg, dimension_feature_map[k])[1])
            middle_layers.add(nn.ReLU())
            # adding dense in forward step

            if k == 1:
                self.feature_map1 = middle_layers
            elif k == 2:
                self.feature_map2 = middle_layers
            elif k == 3:
                self.feature_map3 = None  # convert the sparse data into dense one
                # Sequential(scn.SparseToDense(3, dimension_feature_map[k]))  ## last one is the 2D instead of 3D

            middle_layers = spconv.SparseSequential()
Exemplo n.º 11
0
def block(m,
          i,
          o,
          dimension=3,
          index=0,
          residual_blocks=False,
          norm_cfg=None):  # default using residual_block
    if dimension == 3:  ## 3x3x3 convlution
        if residual_blocks:  #ResNet style blocks
            m.add(
                SubMConv3d(i,
                           o,
                           3,
                           indice_key="su3_{}".format(index),
                           bias=False))
            m.add(ConcatTable().add(Identity()).add(
                block_inside(o, o, index, norm_cfg)))
            m.add(AddTable())
            #m.add(SubMConv3d(2*o, o, 3, indice_key="su3_{}".format(index), bias = False))
            m.add(build_norm_layer(norm_cfg, o)[1])
            m.add(nn.ReLU())
        else:
            m.add(
                SubMConv3d(i,
                           i,
                           3,
                           indice_key="su3_{}".format(index),
                           bias=False))
            m.add(build_norm_layer(norm_cfg, i)[1])
            m.add(nn.ReLU())

            m.add(
                SubMConv3d(i,
                           o,
                           3,
                           indice_key="su3_{}".format(index),
                           bias=False))
            m.add(build_norm_layer(norm_cfg, o)[1])
            m.add(nn.ReLU())

    else:  # 2x2x2 convoltion
        if residual_blocks:  #ResNet style blocks
            m.add(ConcatTable().add(Identity()).add(
                SubMConv2d(i,
                           o,
                           3,
                           indice_key="su2_{}".format(index),
                           bias=False)).add(build_norm_layer(
                               norm_cfg, o)[1]).add(nn.ReLU()).add(
                                   SubMConv2d(
                                       i,
                                       o,
                                       3,
                                       indice_key="su2_{}".format(index),
                                       bias=False)).add(
                                           build_norm_layer(
                                               norm_cfg, o)[1]).add(
                                                   nn.ReLU())).add(AddTable())
        else:
            m.add(spconv.SparseSequential().add(
                SubMConv2d(i,
                           o,
                           3,
                           indice_key="su2_{}".format(index),
                           bias=False)).add(build_norm_layer(
                               norm_cfg, o)[1]).add(nn.ReLU()).add(
                                   SubMConv2d(
                                       i,
                                       o,
                                       3,
                                       indice_key="su2_{}".format(index),
                                       bias=False)).add(
                                           build_norm_layer(
                                               norm_cfg, o)[1]).add(nn.ReLU()))