def main(libpath, modeldir, overwrite):
    ext = os.path.splitext(libpath)[-1].lower()
    if ext == '.csv':
        params = pd.read_csv(libpath)
        maskpath = libpath[:-4] + '_mask.csv'
        # Create mask dataframe
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(params[p])
            param_mask['u_' + p] = np.isfinite(params[p])

        params = get_isochrone_params(params, modeldir, overwrite)

        params.to_csv(libpath)
        param_mask.to_csv(maskpath)

    elif ext == '.h5':
        lib = library.read_hdf(libpath)
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(lib.library_params[p])
            param_mask['u_' + p] = np.isfinite(lib.library_params[p])

        lib.library_params = get_isochrone_params(lib.library_params, modeldir,
                                                  overwrite)
        lib.param_mask = param_mask

        lib.to_hdf(libpath)

    else:
        print("Library file was not in a valid format.")
        sys.exit(1)
Exemplo n.º 2
0
def main(libpath, modeldir, overwrite):
    ext = os.path.splitext(libpath)[-1].lower()
    if ext == '.csv':
        params = pd.read_csv(libpath)
        maskpath = libpath[:-4] + '_mask.csv'
        # Create mask dataframe
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(params[p])
            param_mask['u_'+p] = np.isfinite(params[p])

        params = get_isochrone_params(params, modeldir, overwrite)

        params.to_csv(libpath)
        param_mask.to_csv(maskpath)

    elif ext == '.h5':
        lib = library.read_hdf(libpath)
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(lib.library_params[p])
            param_mask['u_'+p] = np.isfinite(lib.library_params[p])

        lib.library_params = get_isochrone_params(lib.library_params,
                                modeldir, overwrite)
        lib.param_mask = param_mask

        lib.to_hdf(libpath)

    else:
        print("Library file was not in a valid format.")
        sys.exit(1)
Exemplo n.º 3
0
def main(append, parampath, specdir, outdir):
    library_params = pd.read_csv(parampath, index_col=0)

    library_params['lib_index'] = None

    # Read in NSO spectrum
    nso = spectrum.read_fits(os.path.join(specdir, 'nso_adj.fits'))
    nso = nso.cut(*WAVLIM)
    # Use NSO wavelength scale as library wavelength scale
    wav = nso.w

    # Read in all spectra
    spectra = np.empty((0, 3, len(wav)))
    for idx, row in library_params.iterrows():
        lib_obs = row['lib_obs']
        spec_path = os.path.join(specdir, lib_obs+'_adj.fits')
        spec = spectrum.read_fits(spec_path).cut(*WAVLIM)

        # Check that shifted spectra are on same wavelength scale
        if not np.allclose(spec.w, wav):
            print("Spectrum {0} was not on the same wavelength scale".format(
                  row.lib_obs))
            library_params.loc[idx, 'lib_obs'] = None
            continue

        # Add spectrum to library
        library_params.loc[idx, 'lib_index'] = len(spectra)
        spectra = np.vstack((spectra, [[spec.s, spec.serr, spec.mask]]))

    # Read in parameter mask
    maskpath = parampath[:-4] + '_mask.csv'
    if os.path.exists(maskpath):
        param_mask = pd.read_csv(maskpath, index_col=0)
    else:
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(library_params[p])
            param_mask['u_'+p] = np.isfinite(library_params[p])

    # Drop stars with missing spectra
    missing_spectra = pd.isnull(library_params.lib_obs)
    missing_indices = library_params[missing_spectra].index.tolist()
    print("Dropping {0:d} stars with no spectra".format(len(missing_indices)))
    library_params.drop(missing_indices, inplace=True)
    param_mask.drop(missing_indices, inplace=True)

    libpath = os.path.join(outdir, 'library.h5')
    if append:
        lib = library.read_hdf(libpath)
        lib.append(library_params, spectra, param_mask)
    else:
        lib = library.Library(wav, spectra, library_params, wavlim=WAVLIM,
                              param_mask=param_mask, nso=nso)
        # Get allowed shift references
        shift_obs = [row[0] for r in SHIFT_REFERENCES]
        lib.header['shift_refs'] = shift_obs

    # Save library
    lib.to_hdf(libpath)
Exemplo n.º 4
0
def specmatch_spectrum(args):
    lib_subset = None
    if args.debug:
        lib = library.read_hdf(wavlim='none')
        nspec = len(lib.library_params)
        lib_subset = np.random.choice(np.arange(nspec),
                                      size=args.n_lib_subset,
                                      replace=False)
        lib_subset = np.sort(lib_subset)
        lib_subset = list(lib_subset)

    core.specmatch_spectrum(args.spectrum,
                            plot_level=args.plots,
                            inlib=args.in_library,
                            outdir=args.outdir,
                            num_best=args.num_best,
                            suffix=args.suffix,
                            lib_subset=lib_subset)
def main(libpath, targ_name, outpath):
    lib = library.read_hdf(libpath)
    targ_idx = lib.get_index(targ_name)
    targ_param, targ_spec = lib[targ_idx]

    results = lib.library_params.copy()

    for wl in range(WAVLIM[0], WAVLIM[1], WAVSTEP):
        print("Matching region {0:d} - {1:d}".format(wl, wl + 100))
        sm = specmatch.SpecMatch(targ_spec, lib, (wl, wl + WAVSTEP))
        sm.match(ignore=targ_idx)

        cs_col = 'chi_squared_{0:d}'.format(wl)
        results[cs_col] = sm.match_results['chi_squared']
        fit_col = 'fit_params_{0:d}'.format(wl)
        results[fit_col] = sm.match_results['fit_params']

    results.to_csv(outpath)
def main(libpath, targ_name, outpath):
    lib = library.read_hdf(libpath)
    targ_idx = lib.get_index(targ_name)
    targ_param, targ_spec = lib[targ_idx]

    results = lib.library_params.copy()

    for wl in range(WAVLIM[0], WAVLIM[1], WAVSTEP):
        print("Matching region {0:d} - {1:d}".format(wl, wl+100))
        sm = specmatch.SpecMatch(targ_spec, lib, (wl, wl+WAVSTEP))
        sm.match(ignore=targ_idx)

        cs_col = 'chi_squared_{0:d}'.format(wl)
        results[cs_col] = sm.match_results['chi_squared']
        fit_col = 'fit_params_{0:d}'.format(wl)
        results[fit_col] = sm.match_results['fit_params']

    results.to_csv(outpath)
Exemplo n.º 7
0
def main(libpath, targ_name, respath, outpath, num_best):
    lib = library.read_hdf(libpath)
    targ_idx = lib.get_index(targ_name)
    targ_param, targ_spec = lib[targ_idx]

    res_match = pd.read_csv(respath, index_col=0)
    res_lincomb = targ_param.to_frame().transpose()

    for wl in range(WAVLIM[0], WAVLIM[1], WAVSTEP):
        matchcs_col = 'chi_squared_{0:d}'.format(wl)
        res_match.sort_values(by=matchcs_col, inplace=True)
        matchfit_col = 'fit_params_{0:d}'.format(wl)

        sm = specmatch.SpecMatch(targ_spec, lib, (wl,wl+100), num_best)
        sm.match(match_results=res_match.rename(\
            columns={matchcs_col:'chi_squared', matchfit_col:'fit_params'}))

        bestcs_col = 'best_cs_lincomb{0:d}_{1:d}'.format(num_best, wl)
        bestcs = np.array(res_match.head(num_best)[matchcs_col])
        res_lincomb[bestcs_col] = json.dumps(bestcs.tolist())

        refidxs_col = 'ref_idxs_lincomb{0:d}_{1:d}'.format(num_best, wl)
        ref_idxs = np.array(res_match.head(num_best).index)
        res_lincomb[refidxs_col] = json.dumps(ref_idxs.tolist())

        coeffs_col = 'coeffs_lincomb{0:d}_{1:d}'.format(num_best, wl)
        coeffs = np.array(match.get_lincomb_coeffs(sm.mt_lincomb.best_params))
        res_lincomb[coeffs_col] = json.dumps(coeffs.tolist())

        cs_col = 'chi_squared_lincomb{0:d}_{1:d}'.format(num_best, wl)
        res_lincomb[cs_col] = sm.mt_lincomb.best_chisq

        fit_col = 'fit_params_lincomb{0:d}_{1:d}'.format(num_best, wl)
        res_lincomb[fit_col] = sm.mt_lincomb.best_params.dumps()

    res_lincomb.to_csv(outpath)
from specmatchemp import library

if __name__ == '__main__':
    # Argument parser
    psr = ArgumentParser(description="Combine match results")
    psr.add_argument('libpath', type=str, help="Path to library file")
    psr.add_argument('resdir', type=str, help="Path to results directory")
    psr.add_argument('-s', '--suffix', type=str, default="", help="Suffix to append to results files")
    args = psr.parse_args()

    if not os.path.isdir(args.resdir):
        print("Could not find folder at {0}".format(args.resdir))
        sys.exit(1)

    lib = library.read_hdf(args.libpath, wavlim='none')

    # get names of stars
    names = list(lib.library_params.cps_name)

    # global dataframe to store 
    res_global = pd.DataFrame()

    min_num = 2
    max_num = 9
    for name in names:
        # combine results as one row for each star.
        res_star = pd.DataFrame()
        for num_best in range(min_num, max_num):
            res_path = os.path.join(args.resdir, '{0}/{0}_lincomb{1:d}.csv'.format(name, num_best))
def main(resdir, suffix, plots):
    lib = library.read_hdf(wavlim='none')

    # Create global dataframe to store results
    match_res_global = pd.DataFrame()
    lincomb_res_global = pd.DataFrame()

    for idx, row in lib.library_params.iterrows():
        targ_name = row['cps_name']
        res_path = os.path.join(
            resdir,
            targ_name + '/' + targ_name + args.suffix + '_lincomb_sm.hdf')
        if not os.path.exists(res_path):
            res_path = os.path.join(
                resdir, targ_name + '/' + targ_name + args.suffix + '_sm.hdf')
            if not os.path.exists(res_path):
                print("Results file for {0} not found!".format(targ_name))
                continue

        print("Reading in results for {0}".format(targ_name))

        sm = specmatch.SpecMatch.read_hdf(res_path, lib)

        # Read in library grid search results
        sm.match_results['targ_idx'] = idx
        sm.match_results['ref_idx'] = sm.match_results.index
        # Concatenate library grid search results
        if match_res_global.empty:
            match_res_global = sm.match_results
        else:
            match_res_global = pd.concat((match_res_global, sm.match_results),
                                         ignore_index=True)

        if lincomb_res_global.empty:
            # Create global results dataframe containing final lincomb
            # chi-squared and generated results
            lincomb_res_global = lib.library_params.copy()
            for i in range(len(sm.lincomb_regions)):
                reg = sm.lincomb_regions[i]
                suf = '_lincomb_{0:.0f}'.format(reg[0])
                cs_col = 'chi_squared' + suf
                lincomb_res_global[cs_col] = np.nan
                for p in library.Library.STAR_PROPS:
                    p_col = p + suf
                    lincomb_res_global[p_col] = np.nan

            suf = '_lincomb'
            for p in library.Library.STAR_PROPS:
                p_col = p + suf
                p_nodetrend_col = p + '_nodetrend' + suf
                lincomb_res_global[p_col] = np.nan
                lincomb_res_global['u_' + p_col] = np.nan
                lincomb_res_global[p_nodetrend_col] = np.nan

        # Read in lincomb results for each wavelength region
        for i in range(len(sm.lincomb_regions)):
            mt = sm.lincomb_matches[i]
            reg = sm.lincomb_regions[i]
            suf = '_lincomb_{0:.0f}'.format(reg[0])
            cs_col = 'chi_squared' + suf
            lincomb_res_global.loc[idx, cs_col] = mt.best_chisq
            for p in library.Library.STAR_PROPS:
                p_col = p + suf
                lincomb_res_global.loc[idx, p_col] = sm.lincomb_results[i][p]

        # Read in averaged results
        suf = '_lincomb'
        for p in library.Library.STAR_PROPS:
            p_col = p + suf
            p_nodetrend_col = p + '_nodetrend' + suf
            lincomb_res_global.loc[idx, p_col] = sm.results[p]
            lincomb_res_global.loc[idx, 'u_' + p_col] = sm.results['u_' + p]
            lincomb_res_global.loc[idx, p_nodetrend_col] = \
                sm.results_nodetrend[p]

    # Save results
    outpath = os.path.join(resdir, 'match_results' + suffix + '.csv')
    match_res_global.index.names = ['idx']
    match_res_global.to_csv(outpath)
    outpath = os.path.join(resdir, 'lincomb_results' + suffix + '.csv')
    lincomb_res_global.to_csv(outpath)

    if plots:
        # Plots for individual regions
        plotspath = os.path.join(resdir, 'library_plots_regions.pdf')
        with PdfPages(plotspath) as pdf:
            cols = list(lincomb_res_global.columns)
            cscols = cscols = [
                c for c in cols if re.search('chi_squared_lincomb_\d+', c)
            ]
            regions = list(
                set([
                    re.search('chi_squared_lincomb_(\d+)$', c).group(1)
                    for c in cscols
                ]))

            for reg in regions:
                reg = float(reg)
                suf = '_lincomb_{0:.0f}'.format(reg)
                title = 'Wavelength region: {0:.0f} - {1:.0f} A'\
                        .format(reg, reg + 100)
                plot_diag(lincomb_res_global, suf, pdf, title)

        # Plots for nodetrend parameters
        plotspath = os.path.join(resdir, 'library_plots_nodetrend.pdf')
        with PdfPages(plotspath) as pdf:
            suf = '_nodetrend_lincomb'
            title = 'Averaged over all wavelengths, not detrended'
            # Plot all stars
            plot_diag(lincomb_res_global, suf, pdf, title, trend=True)

        # Plots for detrended parameters
        plotspath = os.path.join(resdir, 'library_plots_lincomb.pdf')
        with PdfPages(plotspath) as pdf:
            suf = '_lincomb'
            title = 'Averaged over all wavelengths, detrended'
            # Plot all stars
            plot_diag(lincomb_res_global, suf, pdf, title)
Exemplo n.º 10
0
def main(append, parampath, specdir, outdir):
    library_params = pd.read_csv(parampath, index_col=0)

    library_params['lib_index'] = None

    # Read in NSO spectrum
    nso = spectrum.read_fits(os.path.join(specdir, 'nso_adj.fits'))
    nso = nso.cut(*WAVLIM)
    # Use NSO wavelength scale as library wavelength scale
    wav = nso.w

    # Read in all spectra
    spectra = np.empty((0, 3, len(wav)))
    for idx, row in library_params.iterrows():
        lib_obs = row['lib_obs']
        spec_path = os.path.join(specdir, lib_obs + '_adj.fits')
        spec = spectrum.read_fits(spec_path).cut(*WAVLIM)

        # Check that shifted spectra are on same wavelength scale
        if not np.allclose(spec.w, wav):
            print("Spectrum {0} was not on the same wavelength scale".format(
                row.lib_obs))
            library_params.loc[idx, 'lib_obs'] = None
            continue

        # Add spectrum to library
        library_params.loc[idx, 'lib_index'] = len(spectra)
        spectra = np.vstack((spectra, [[spec.s, spec.serr, spec.mask]]))

    # Read in parameter mask
    maskpath = parampath[:-4] + '_mask.csv'
    if os.path.exists(maskpath):
        param_mask = pd.read_csv(maskpath, index_col=0)
    else:
        param_mask = pd.DataFrame()
        for p in library.Library.STAR_PROPS:
            param_mask[p] = np.isfinite(library_params[p])
            param_mask['u_' + p] = np.isfinite(library_params[p])

    # Drop stars with missing spectra
    missing_spectra = pd.isnull(library_params.lib_obs)
    missing_indices = library_params[missing_spectra].index.tolist()
    print("Dropping {0:d} stars with no spectra".format(len(missing_indices)))
    library_params.drop(missing_indices, inplace=True)
    param_mask.drop(missing_indices, inplace=True)

    libpath = os.path.join(outdir, 'library.h5')
    if append:
        lib = library.read_hdf(libpath)
        lib.append(library_params, spectra, param_mask)
    else:
        lib = library.Library(wav,
                              spectra,
                              library_params,
                              wavlim=WAVLIM,
                              param_mask=param_mask,
                              nso=nso)
        # Get allowed shift references
        shift_obs = [row[0] for r in SHIFT_REFERENCES]
        lib.header['shift_refs'] = shift_obs

    # Save library
    lib.to_hdf(libpath)
    psr.add_argument('formatstring', type=str, help="Format string")
    psr.add_argument('cols', nargs='*', type=str, help="Columns to use")
    psr.add_argument('-a',
                     '--append',
                     action='store_const',
                     const='a+',
                     default="w+",
                     help="Append to existing script")
    args = psr.parse_args()

    if not os.path.isfile(args.libpath):
        print("Could not find {0}".format(args.libpath))
        sys.exit(1)

    if os.path.splitext(args.libpath)[1] == ".h5":
        lib = library.read_hdf(args.libpath, wavlim='none')
        df = lib.library_params
    elif os.path.splitext(args.libpath)[1] == ".csv":
        df = pd.read_csv(args.libpath)
    else:
        print("{0} was not a valid library format".format(args.libpath))

    scriptfile = open(args.outpath, args.append)

    for idx, row in df.iterrows():
        s = "source ~/.bash_profile; "
        s += args.formatstring.format(*(row[args.cols].values))
        s += "\n"
        scriptfile.write(s)

    scriptfile.close()
Exemplo n.º 12
0
def specmatch_spectrum(specpath, plot_level=0, inlib=False, outdir="./",
                       num_best=5, suffix="", wavlim='all', lib_subset=None,
                       name=None, n_lib_subset=None):
    """Perform the specmatch on a given spectrum

    Args:
        specpath (str): Path to target spectrum
        plot_level (int, 0-2): Level of plots
            0 - No plots saved, 1 - Representative plots, 2 - All plots
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        num_best (int): Number of best matches to use at lincomb stage
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    if not os.path.exists(specpath):
        raise ValueError(specpath + " does not exist!")

    if wavlim == 'all':
        target = spectrum.read_hires_fits(specpath)
    else:
        target = spectrum.read_hires_fits(specpath).cut(*wavlim)

    # Determine the name of the target
    if inlib:
        name = inlib
    elif name is None:
        name = os.path.basename(specpath)[:-5]

    if n_lib_subset is not None:
        lib = library.read_hdf(wavlim='none')
        lib_subset = lib.library_params.lib_index
        lib_subset = np.random.choice(
            lib_subset, size=n_lib_subset, replace=False
        )

    lib = library.read_hdf(wavlim=wavlim, lib_index_subset=lib_subset)
    sm = specmatch.SpecMatch(target, lib)
    sm.shift()

    if inlib:
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
        sm.match(ignore=targ_idx, wavlim=wavlim)
    else:
        targ_param = None
        sm.match(wavlim=wavlim)

    sm.target.name = name  # attach target name

    sm.lincomb(num_best)

    # Print results
    print("SpecMatch Results for {0}".format(name))
    sm.results_to_txt(sys.stdout)

    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Save final results
    outpath = os.path.join(outdir, name + suffix + '_results.txt')
    with open(outpath, 'w') as f:
        if inlib:
            f.write('Library Parameters\n')
            f.write('------------------\n')
            f.write('Teff: {0:.0f} +/- {1:.0f} K\n'.format(
                targ_param['Teff'], targ_param['u_Teff']))
            f.write('Radius: {0:.3f} +/- {1:.3f} Rsun\n'.format(
                targ_param['radius'], targ_param['u_radius']))
            f.write('[Fe/H]: {0:.2f} +/- {1:.2f} dex\n'.format(
                targ_param['feh'], targ_param['u_feh']))
        f.write('\n')
        sm.results_to_txt(f, verbose=True)
        print("created {}".format(outpath))

    # Save full results
    outpath = os.path.join(outdir, name + suffix + '_sm.hdf')
    sm.to_hdf(outpath)
    print("created {}".format(outpath))

    # Create representative plots
    if plot_level is not None and plot_level > 0:
        plotspath = os.path.join(outdir, name + suffix + '_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            order = 2

            plot_shifts(sm, pdf, order, wavlim)
            plot_match(sm, pdf, region, wavlim, targ_param)
            plot_lincomb(sm, pdf, region, wavlim, targ_param)
            print("created {}".format(plotspath))

    # Create full plots
    if plot_level == 2:
        shiftplotspath = os.path.join(outdir, name + suffix +
                                      '_shift_plots.pdf')
        with PdfPages(shiftplotspath) as pdf:
            for order in range(np.shape(sm.target_unshifted.w)[0]):
                plot_shifts(sm, pdf, order, wavlim='all')

        matchplotspath = os.path.join(outdir, name + suffix +
                                      '_match_plots.pdf')
        with PdfPages(matchplotspath) as pdf:
            for reg in sm.regions:
                plot_match(sm, pdf, reg, wavlim='all', targ_param=targ_param)

        lincombplotspath = os.path.join(outdir, name + suffix +
                                        '_lincomb_plots.pdf')
        with PdfPages(lincombplotspath) as pdf:
            for reg in sm.lincomb_regions:
                plot_lincomb(sm, pdf, reg, wavlim='all', targ_param=targ_param)

        print("created {}".format(plotspath))

    return sm
Exemplo n.º 13
0
def match_spectrum(specpath, indir="./", plot_level=0, inlib=False,
                   outdir="./", suffix=""):
    """Match a spectrum given its observation ID

    Args:
        specpath (str): Path to spectrum or its CPS observation id jXX.XXXX
        indir (str): Directory to look in for target spectrum
        plot_level (int, 0-2): Level of plotting to save
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    # Check if specpath is a path or an observation ID
    if os.path.exists(specpath):
        targ_path = specpath
        targid = os.path.splitext(os.path.basename(specpath))[0]
    else:
        targ_path = os.path.join(indir, 'r' + specpath + '_adj' + suffix +
                                 '.fits')
        if not os.path.exists(targ_path):
            raise ValueError(specpath + " does not exist!")
        targid = 'r' + specpath

    # Load shifted spectrum
    target = spectrum.read_fits(targ_path)

    lib = library.read_hdf()
    sm = specmatch.SpecMatch(target, lib)

    if inlib:
        name = inlib
        sm.target.name = inlib
        sm.target.attrs['obs'] = targid
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
        sm.match(ignore=targ_idx)
    else:
        name = targid
        targ_param = None
        sm.match()

    # Save results
    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.mkdir(outdir)
    outpath = os.path.join(outdir, name + suffix + '_match.csv')
    sm.match_results.to_csv(outpath)

    # Save SpecMatch object
    outpath = os.path.join(outdir, name + suffix + '_sm.hdf')
    sm.to_hdf(outpath)

    # Generate representative plots
    if plot_level == 1:
        plotspath = os.path.join(outdir, name + suffix + '_match_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            plot_match(sm, pdf, region, wavlim, targ_param)

    # Generate full plots
    if plot_level == 2:
        plotspath = os.path.join(outdir, name + suffix + '_match_plots.pdf')
        with PdfPages(plotspath) as pdf:
            for reg in sm.regions:
                plot_match(sm, pdf, reg, wavlim='all', targ_param=targ_param)

    return sm
Exemplo n.º 14
0
def lincomb_spectrum(respath,
                     plot_level=0,
                     inlib=False,
                     outdir="./",
                     num_best=5,
                     suffix=""):
    """Match a spectrum using the linear combination approach.
    Can only be used to resume an existing SpecMatch object.

    Args:
        respath (str): Path to existing SpecMatch.hdf file
        plot_level (int, 0-2): Level of plotting to save
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        num_best (int): Number of best matches to use at lincomb stage
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    lib = library.read_hdf()
    sm = specmatch.SpecMatch.read_hdf(respath, lib)
    name = sm.target.name

    if inlib:
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
    else:
        targ_param = None

    sm.lincomb(num_best=num_best)

    # Print results
    print("SpecMatch Results for {0}".format(name))
    for p in library.Library.STAR_PROPS:
        print("{0}: {1:.2f}".format(p, sm.results[p]))

    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.mkdir(outdir)

    # Save final results
    outpath = os.path.join(outdir, name + suffix + '_results.txt')
    with open(outpath, 'w') as f:
        if inlib:
            f.write('Library Parameters\n')
            f.write('------------------\n')
            f.write('Teff: {0:.0f} +/- {1:.0f} K\n'.format(
                targ_param['Teff'], targ_param['u_Teff']))
            f.write('Radius: {0:.3f} +/- {1:.3f} Rsun\n'.format(
                targ_param['radius'], targ_param['u_radius']))
            f.write('[Fe/H]: {0:.2f} +/- {1:.2f} dex\n'.format(
                targ_param['feh'], targ_param['u_feh']))
        f.write('\n')
        sm.results_to_txt(f, verbose=True)

    # Save full results
    outpath = os.path.join(outdir, name + suffix + '_lincomb_sm.hdf')
    sm.to_hdf(outpath)

    # Plot results
    if plot_level == 1:
        plotspath = os.path.join(outdir, name + suffix + '_lincomb_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            plot_lincomb(sm, pdf, region, wavlim, targ_param)

    if plot_level == 2:
        plotspath = os.path.join(outdir, name + suffix + '_lincomb_plots.pdf')
        with PdfPages(plotspath) as pdf:
            for reg in sm.lincomb_regions:
                plot_lincomb(sm, pdf, reg, wavlim='all', targ_param=targ_param)
    return sm
Exemplo n.º 15
0
def match_spectrum(specpath,
                   indir="./",
                   plot_level=0,
                   inlib=False,
                   outdir="./",
                   suffix=""):
    """Match a spectrum given its observation ID

    Args:
        specpath (str): Path to spectrum or its CPS observation id jXX.XXXX
        indir (str): Directory to look in for target spectrum
        plot_level (int, 0-2): Level of plotting to save
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    # Check if specpath is a path or an observation ID
    if os.path.exists(specpath):
        targ_path = specpath
        targid = os.path.splitext(os.path.basename(specpath))[0]
    else:
        targ_path = os.path.join(indir,
                                 'r' + specpath + '_adj' + suffix + '.fits')
        if not os.path.exists(targ_path):
            raise ValueError(specpath + " does not exist!")
        targid = 'r' + specpath

    # Load shifted spectrum
    target = spectrum.read_fits(targ_path)

    lib = library.read_hdf()
    sm = specmatch.SpecMatch(target, lib)

    if inlib:
        name = inlib
        sm.target.name = inlib
        sm.target.attrs['obs'] = targid
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
        sm.match(ignore=targ_idx)
    else:
        name = targid
        targ_param = None
        sm.match()

    # Save results
    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.mkdir(outdir)
    outpath = os.path.join(outdir, name + suffix + '_match.csv')
    sm.match_results.to_csv(outpath)

    # Save SpecMatch object
    outpath = os.path.join(outdir, name + suffix + '_sm.hdf')
    sm.to_hdf(outpath)

    # Generate representative plots
    if plot_level == 1:
        plotspath = os.path.join(outdir, name + suffix + '_match_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            plot_match(sm, pdf, region, wavlim, targ_param)

    # Generate full plots
    if plot_level == 2:
        plotspath = os.path.join(outdir, name + suffix + '_match_plots.pdf')
        with PdfPages(plotspath) as pdf:
            for reg in sm.regions:
                plot_match(sm, pdf, reg, wavlim='all', targ_param=targ_param)

    return sm
Exemplo n.º 16
0
def specmatch_spectrum(specpath,
                       plot_level=0,
                       inlib=False,
                       outdir="./",
                       num_best=5,
                       suffix="",
                       wavlim='all',
                       lib_subset=None,
                       name=None,
                       n_lib_subset=None):
    """Perform the specmatch on a given spectrum

    Args:
        specpath (str): Path to target spectrum
        plot_level (int, 0-2): Level of plots
            0 - No plots saved, 1 - Representative plots, 2 - All plots
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        num_best (int): Number of best matches to use at lincomb stage
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    if not os.path.exists(specpath):
        raise ValueError(specpath + " does not exist!")

    if wavlim == 'all':
        target = spectrum.read_hires_fits(specpath)
    else:
        target = spectrum.read_hires_fits(specpath).cut(*wavlim)

    # Determine the name of the target
    if inlib:
        name = inlib
    elif name is None:
        name = os.path.basename(specpath)[:-5]

    if n_lib_subset is not None:
        lib = library.read_hdf(wavlim='none')
        lib_subset = lib.library_params.lib_index
        lib_subset = np.random.choice(lib_subset,
                                      size=n_lib_subset,
                                      replace=False)

    lib = library.read_hdf(wavlim=wavlim, lib_index_subset=lib_subset)
    sm = specmatch.SpecMatch(target, lib)
    sm.shift()

    if inlib:
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
        sm.match(ignore=targ_idx, wavlim=wavlim)
    else:
        targ_param = None
        sm.match(wavlim=wavlim)

    sm.target.name = name  # attach target name

    sm.lincomb(num_best)

    # Print results
    print("SpecMatch Results for {0}".format(name))
    sm.results_to_txt(sys.stdout)

    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.makedirs(outdir)

    # Save final results
    outpath = os.path.join(outdir, name + suffix + '_results.txt')
    with open(outpath, 'w') as f:
        if inlib:
            f.write('Library Parameters\n')
            f.write('------------------\n')
            f.write('Teff: {0:.0f} +/- {1:.0f} K\n'.format(
                targ_param['Teff'], targ_param['u_Teff']))
            f.write('Radius: {0:.3f} +/- {1:.3f} Rsun\n'.format(
                targ_param['radius'], targ_param['u_radius']))
            f.write('[Fe/H]: {0:.2f} +/- {1:.2f} dex\n'.format(
                targ_param['feh'], targ_param['u_feh']))
        f.write('\n')
        sm.results_to_txt(f, verbose=True)
        print("created {}".format(outpath))

    # Save full results
    outpath = os.path.join(outdir, name + suffix + '_sm.hdf')
    sm.to_hdf(outpath)
    print("created {}".format(outpath))

    # Create representative plots
    if plot_level is not None and plot_level > 0:
        plotspath = os.path.join(outdir, name + suffix + '_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            order = 2

            plot_shifts(sm, pdf, order, wavlim)
            plot_match(sm, pdf, region, wavlim, targ_param)
            plot_lincomb(sm, pdf, region, wavlim, targ_param)
            print("created {}".format(plotspath))

    # Create full plots
    if plot_level == 2:
        shiftplotspath = os.path.join(outdir,
                                      name + suffix + '_shift_plots.pdf')
        with PdfPages(shiftplotspath) as pdf:
            for order in range(np.shape(sm.target_unshifted.w)[0]):
                plot_shifts(sm, pdf, order, wavlim='all')

        matchplotspath = os.path.join(outdir,
                                      name + suffix + '_match_plots.pdf')
        with PdfPages(matchplotspath) as pdf:
            for reg in sm.regions:
                plot_match(sm, pdf, reg, wavlim='all', targ_param=targ_param)

        lincombplotspath = os.path.join(outdir,
                                        name + suffix + '_lincomb_plots.pdf')
        with PdfPages(lincombplotspath) as pdf:
            for reg in sm.lincomb_regions:
                plot_lincomb(sm, pdf, reg, wavlim='all', targ_param=targ_param)

        print("created {}".format(plotspath))

    return sm
Exemplo n.º 17
0
def lincomb_spectrum(respath, plot_level=0, inlib=False, outdir="./",
                     num_best=5, suffix=""):
    """Match a spectrum using the linear combination approach.
    Can only be used to resume an existing SpecMatch object.

    Args:
        respath (str): Path to existing SpecMatch.hdf file
        plot_level (int, 0-2): Level of plotting to save
        inlib (str or False): String to search within library for to exclude
            from matching process
        outdir (str): Output file directory
        num_best (int): Number of best matches to use at lincomb stage
        suffix (str): String to append to output file names

    Returns:
        specmatch.SpecMatch object
    """
    lib = library.read_hdf()
    sm = specmatch.SpecMatch.read_hdf(respath, lib)
    name = sm.target.name

    if inlib:
        targ_idx = lib.get_index(inlib)
        targ_param, targ_spec = lib[targ_idx]
    else:
        targ_param = None

    sm.lincomb(num_best=num_best)

    # Print results
    print("SpecMatch Results for {0}".format(name))
    for p in library.Library.STAR_PROPS:
        print("{0}: {1:.2f}".format(p, sm.results[p]))

    outdir = os.path.join(outdir, name)
    if not os.path.exists(outdir):
        os.mkdir(outdir)

    # Save final results
    outpath = os.path.join(outdir, name + suffix + '_results.txt')
    with open(outpath, 'w') as f:
        if inlib:
            f.write('Library Parameters\n')
            f.write('------------------\n')
            f.write('Teff: {0:.0f} +/- {1:.0f} K\n'.format(
                targ_param['Teff'], targ_param['u_Teff']))
            f.write('Radius: {0:.3f} +/- {1:.3f} Rsun\n'.format(
                targ_param['radius'], targ_param['u_radius']))
            f.write('[Fe/H]: {0:.2f} +/- {1:.2f} dex\n'.format(
                targ_param['feh'], targ_param['u_feh']))
        f.write('\n')
        sm.results_to_txt(f, verbose=True)

    # Save full results
    outpath = os.path.join(outdir, name + suffix + '_lincomb_sm.hdf')
    sm.to_hdf(outpath)

    # Plot results
    if plot_level == 1:
        plotspath = os.path.join(outdir, name + suffix + '_lincomb_plots.pdf')
        with PdfPages(plotspath) as pdf:
            region = (5100, 5200)
            wavlim = (5160, 5190)
            plot_lincomb(sm, pdf, region, wavlim, targ_param)

    if plot_level == 2:
        plotspath = os.path.join(outdir, name + suffix + '_lincomb_plots.pdf')
        with PdfPages(plotspath) as pdf:
            for reg in sm.lincomb_regions:
                plot_lincomb(sm, pdf, reg, wavlim='all', targ_param=targ_param)
    return sm
Exemplo n.º 18
0
import numpy as np
from collections import defaultdict

from specmatchemp import library
from specmatchemp import specmatch

# Noise selection path
lst = '/home/syee/specmatchemp-working/specmatchemp/tests/noise_selection.csv'
lc = '/home/syee/specmatchemp-working/specmatchemp/results/lincomb_results.csv'
res_path = '/home/syee/specmatchemp-working/specmatchemp/tests/resstudy_result.csv'
resdir = '/home/syee/specmatchemp-working/specmatchemp/results/'
RESOLUTION = [50000, 30000, 20000, 10000, 5000, 2500]

if __name__ == '__main__':
    # Read library
    lib = library.read_hdf()
    # Get list of stars which were tested
    starlist = pd.read_csv(lst)
    # Open lincomb results
    lincomb_res_table = pd.read_csv(lc)

    for idx, row in starlist.iterrows():
        star = row['cps_name']
        # Get original lincomb result
        lc_res = lincomb_res_table.query('cps_name == "' + star + '"').iloc[0]
        suf = '_nodetrend_lincomb'
        lincomb_result = {}
        for p in library.Library.STAR_PROPS:
            p_col = p + suf
            starlist.loc[idx, p_col] = lc_res[p_col]
            lincomb_result[p] = lc_res[p_col]
def main(resdir, suffix, plots):
    lib = library.read_hdf(wavlim='none')

    # Create global dataframe to store results
    match_res_global = pd.DataFrame()
    lincomb_res_global = pd.DataFrame()

    for idx, row in lib.library_params.iterrows():
        targ_name = row['cps_name']
        res_path = os.path.join(resdir, targ_name + '/' + targ_name +
                                args.suffix + '_lincomb_sm.hdf')
        if not os.path.exists(res_path):
            res_path = os.path.join(resdir, targ_name + '/' + targ_name +
                                    args.suffix + '_sm.hdf')
            if not os.path.exists(res_path):
                print("Results file for {0} not found!".format(targ_name))
                continue

        print("Reading in results for {0}".format(targ_name))

        sm = specmatch.SpecMatch.read_hdf(res_path, lib)

        # Read in library grid search results
        sm.match_results['targ_idx'] = idx
        sm.match_results['ref_idx'] = sm.match_results.index
        # Concatenate library grid search results
        if match_res_global.empty:
            match_res_global = sm.match_results
        else:
            match_res_global = pd.concat((match_res_global, sm.match_results),
                                         ignore_index=True)

        if lincomb_res_global.empty:
            # Create global results dataframe containing final lincomb
            # chi-squared and generated results
            lincomb_res_global = lib.library_params.copy()
            for i in range(len(sm.lincomb_regions)):
                reg = sm.lincomb_regions[i]
                suf = '_lincomb_{0:.0f}'.format(reg[0])
                cs_col = 'chi_squared' + suf
                lincomb_res_global[cs_col] = np.nan
                for p in library.Library.STAR_PROPS:
                    p_col = p + suf
                    lincomb_res_global[p_col] = np.nan

            suf = '_lincomb'
            for p in library.Library.STAR_PROPS:
                p_col = p + suf
                p_nodetrend_col = p + '_nodetrend' + suf
                lincomb_res_global[p_col] = np.nan
                lincomb_res_global['u_'+p_col] = np.nan
                lincomb_res_global[p_nodetrend_col] = np.nan

        # Read in lincomb results for each wavelength region
        for i in range(len(sm.lincomb_regions)):
            mt = sm.lincomb_matches[i]
            reg = sm.lincomb_regions[i]
            suf = '_lincomb_{0:.0f}'.format(reg[0])
            cs_col = 'chi_squared' + suf
            lincomb_res_global.loc[idx, cs_col] = mt.best_chisq
            for p in library.Library.STAR_PROPS:
                p_col = p + suf
                lincomb_res_global.loc[idx, p_col] = sm.lincomb_results[i][p]

        # Read in averaged results
        suf = '_lincomb'
        for p in library.Library.STAR_PROPS:
            p_col = p + suf
            p_nodetrend_col = p + '_nodetrend' + suf
            lincomb_res_global.loc[idx, p_col] = sm.results[p]
            lincomb_res_global.loc[idx, 'u_'+p_col] = sm.results['u_'+p]
            lincomb_res_global.loc[idx, p_nodetrend_col] = \
                sm.results_nodetrend[p]

    # Save results
    outpath = os.path.join(resdir, 'match_results' + suffix + '.csv')
    match_res_global.index.names = ['idx']
    match_res_global.to_csv(outpath)
    outpath = os.path.join(resdir, 'lincomb_results' + suffix + '.csv')
    lincomb_res_global.to_csv(outpath)

    if plots:
        # Plots for individual regions
        plotspath = os.path.join(resdir, 'library_plots_regions.pdf')
        with PdfPages(plotspath) as pdf:
            cols = list(lincomb_res_global.columns)
            cscols = cscols = [c for c in cols if re.search(
                'chi_squared_lincomb_\d+', c)]
            regions = list(set([re.search('chi_squared_lincomb_(\d+)$', c)
                               .group(1) for c in cscols]))

            for reg in regions:
                reg = float(reg)
                suf = '_lincomb_{0:.0f}'.format(reg)
                title = 'Wavelength region: {0:.0f} - {1:.0f} A'\
                        .format(reg, reg + 100)
                plot_diag(lincomb_res_global, suf, pdf, title)

        # Plots for nodetrend parameters
        plotspath = os.path.join(resdir, 'library_plots_nodetrend.pdf')
        with PdfPages(plotspath) as pdf:
            suf = '_nodetrend_lincomb'
            title = 'Averaged over all wavelengths, not detrended'
            # Plot all stars
            plot_diag(lincomb_res_global, suf, pdf, title, trend=True)

        # Plots for detrended parameters
        plotspath = os.path.join(resdir, 'library_plots_lincomb.pdf')
        with PdfPages(plotspath) as pdf:
            suf = '_lincomb'
            title = 'Averaged over all wavelengths, detrended'
            # Plot all stars
            plot_diag(lincomb_res_global, suf, pdf, title)