Exemplo n.º 1
0
def specsens(specfile, outfile, stdfile, extfile, airmass=None, exptime=None,
                stdzp=3.68e-20, function='polynomial', order=3, thresh=3, niter=5, 
                clobber=True, logfile='salt.log',verbose=True):

   with logging(logfile,debug) as log:

       #read in the specfile and create a spectrum object
       obs_spectra=st.readspectrum(specfile, error=True, ftype='ascii')

       #read in the std file and convert from magnitudes to fnu
       #then convert it to fwave (ergs/s/cm2/A)
       std_spectra=st.readspectrum(stdfile, error=False, ftype='ascii')
       std_spectra.flux=Spectrum.magtoflux(std_spectra.flux, stdzp)
       std_spectra.flux=Spectrum.fnutofwave(std_spectra.wavelength, std_spectra.flux)


       #read in the extinction file (leave in magnitudes)
       ext_spectra=st.readspectrum(extfile, error=False, ftype='ascii')

       #determine the airmass if not specified
       if saltio.checkfornone(airmass) is None:
           message='Airmass was not supplied'
           raise SALTSpecError(message)

       #determine the exptime if not specified
       if saltio.checkfornone(airmass) is None:
           message='Exposure Time was not supplied'
           raise SALTSpecError(message)
          
       #calculate the calibrated spectra
       log.message('Calculating the calibration curve for %s' % specfile)
       cal_spectra=sensfunc(obs_spectra, std_spectra, ext_spectra, airmass, exptime)

       #fit the spectra--first take a first cut of the spectra
       #using the median absolute deviation to throw away bad points
       cmed=np.median(cal_spectra.flux)
       cmad=saltstat.mad(cal_spectra.flux)
       mask=(abs(cal_spectra.flux-cmed)<thresh*cmad)
       mask=(cal_spectra.flux>0)

       #now fit the data
       fit=interfit(cal_spectra.wavelength[mask], cal_spectra.flux[mask], function=function, order=order, thresh=thresh, niter=niter)
       fit.interfit()

       #print 'plotting...'
       #figure()
       #plot(cal_spectra.wavelength, cal_spectra.flux)
       #plot(obs_spectra.wavelength, obs_spectra.flux*cal_spectra.flux.mean()/obs_spectra.flux.mean())
       #plot(std_spectra.wavelength, std_spectra.flux*cal_spectra.flux.mean()/std_spectra.flux.mean())
       #plot(cal_spectra.wavelength, fit(cal_spectra.wavelength))
       #show()

       #write the spectra out
       cal_spectra.flux=fit(cal_spectra.wavelength)
       st.writespectrum(cal_spectra, outfile, ftype='ascii')
Exemplo n.º 2
0
def speccal(specfile, outfile, calfile, extfile, airmass=None, exptime=None,
            clobber=True, logfile='salt.log', verbose=True):

    with logging(logfile, debug) as log:

        # read in the specfile and create a spectrum object
        obs_spectra = st.readspectrum(specfile, error=True, ftype='ascii')

        # read in the std file and convert from magnitudes to fnu
        # then convert it to fwave (ergs/s/cm2/A)
        cal_spectra = st.readspectrum(calfile, error=False, ftype='ascii')

        # read in the extinction file (leave in magnitudes)
        ext_spectra = st.readspectrum(extfile, error=False, ftype='ascii')

        # determine the airmass if not specified
        if saltio.checkfornone(airmass) is None:
            message = 'Airmass was not supplied'
            raise SALTSpecError(message)

        # determine the exptime if not specified
        if saltio.checkfornone(airmass) is None:
            message = 'Exposure Time was not supplied'
            raise SALTSpecError(message)

        # calculate the calibrated spectra
        log.message('Calculating the calibration curve for %s' % specfile)
        error = False
        try:
            if obs_spectra.var is not None:
                error = True
        except:
            error = False
        flux_spectra = calfunc(
            obs_spectra,
            cal_spectra,
            ext_spectra,
            airmass,
            exptime,
            error)

        # write the spectra out
        st.writespectrum(flux_spectra, outfile, ftype='ascii', error=error)
Exemplo n.º 3
0
def speccal(
    specfile, outfile, calfile, extfile, airmass=None, exptime=None, clobber=True, logfile="salt.log", verbose=True
):

    with logging(logfile, debug) as log:

        # read in the specfile and create a spectrum object
        obs_spectra = st.readspectrum(specfile, error=True, ftype="ascii")

        # read in the std file and convert from magnitudes to fnu
        # then convert it to fwave (ergs/s/cm2/A)
        cal_spectra = st.readspectrum(calfile, error=False, ftype="ascii")

        # read in the extinction file (leave in magnitudes)
        ext_spectra = st.readspectrum(extfile, error=False, ftype="ascii")

        # determine the airmass if not specified
        if saltio.checkfornone(airmass) is None:
            message = "Airmass was not supplied"
            raise SALTSpecError(message)

        # determine the exptime if not specified
        if saltio.checkfornone(airmass) is None:
            message = "Exposure Time was not supplied"
            raise SALTSpecError(message)

        # calculate the calibrated spectra
        log.message("Calculating the calibration curve for %s" % specfile)
        error = False
        try:
            if obs_spectra.var is not None:
                error = True
        except:
            error = False
        flux_spectra = calfunc(obs_spectra, cal_spectra, ext_spectra, airmass, exptime, error)

        # write the spectra out
        st.writespectrum(flux_spectra, outfile, ftype="ascii", error=error)
Exemplo n.º 4
0
def specsens(specfile, outfile, stdfile, extfile, airmass=None, exptime=None,
             stdzp=3.68e-20, function='polynomial', order=3, thresh=3, niter=5,
             fitter='gaussian', clobber=True, logfile='salt.log', verbose=True):

    with logging(logfile, debug) as log:

        # read in the specfile and create a spectrum object
        obs_spectra = st.readspectrum(specfile.strip(), error=True, ftype='ascii')

        # smooth the observed spectrum
        # read in the std file and convert from magnitudes to fnu
        # then convert it to fwave (ergs/s/cm2/A)
        std_spectra = st.readspectrum(stdfile.strip(), error=False, ftype='ascii')
        std_spectra.flux = Spectrum.magtoflux(std_spectra.flux, stdzp)
        std_spectra.flux = Spectrum.fnutofwave(
            std_spectra.wavelength, std_spectra.flux)

        # Get the typical bandpass of the standard star,
        std_bandpass = np.diff(std_spectra.wavelength).mean()
        # Smooth the observed spectrum to that bandpass
        obs_spectra.flux = st.boxcar_smooth(obs_spectra, std_bandpass)
        # read in the extinction file (leave in magnitudes)
        ext_spectra = st.readspectrum(extfile.strip(), error=False, ftype='ascii')

        # determine the airmass if not specified
        if saltio.checkfornone(airmass) is None:
            message = 'Airmass was not supplied'
            raise SALTSpecError(message)

        # determine the exptime if not specified
        if saltio.checkfornone(exptime) is None:
            message = 'Exposure Time was not supplied'
            raise SALTSpecError(message)

        # calculate the calibrated spectra
        log.message('Calculating the calibration curve for %s' % specfile)
        cal_spectra = sensfunc(
            obs_spectra, std_spectra, ext_spectra, airmass, exptime)

        # plot(cal_spectra.wavelength, cal_spectra.flux * std_spectra.flux)
        # fit the spectra--first take a first cut of the spectra
        # using the median absolute deviation to throw away bad points
        cmed = np.median(cal_spectra.flux)
        cmad = saltstat.mad(cal_spectra.flux)
        mask = (abs(cal_spectra.flux - cmed) < thresh * cmad)
        mask = np.logical_and(mask, (cal_spectra.flux > 0))

        # now fit the data
        # Fit using a gaussian process.
        if fitter=='gaussian':
            from sklearn.gaussian_process import GaussianProcess
            #Instanciate a Gaussian Process model

            dy = obs_spectra.var[mask] ** 0.5
            dy /= obs_spectra.flux[mask] / cal_spectra.flux[mask]
            y = cal_spectra.flux[mask]
            gp = GaussianProcess(corr='squared_exponential', theta0=1e-2,
                                 thetaL=1e-4, thetaU=0.1, nugget=(dy / y) ** 2.0)
            X = np.atleast_2d(cal_spectra.wavelength[mask]).T
            # Fit to data using Maximum Likelihood Estimation of the parameters
            gp.fit(X, y)
    
            x = np.atleast_2d(cal_spectra.wavelength).T
            # Make the prediction on the meshed x-axis (ask for MSE as well)
            y_pred = gp.predict(x)

            cal_spectra.flux = y_pred

        else:
            fit=interfit(cal_spectra.wavelength[mask], cal_spectra.flux[mask], function=function, order=order, thresh=thresh, niter=niter)
            fit.interfit()
            cal_spectra.flux=fit(cal_spectra.wavelength)

        # write the spectra out
        st.writespectrum(cal_spectra, outfile, ftype='ascii')
Exemplo n.º 5
0
def specsens(specfile,
             outfile,
             stdfile,
             extfile,
             airmass=None,
             exptime=None,
             stdzp=3.68e-20,
             function='polynomial',
             order=3,
             thresh=3,
             niter=5,
             fitter='gaussian',
             clobber=True,
             logfile='salt.log',
             verbose=True):

    with logging(logfile, debug) as log:

        # read in the specfile and create a spectrum object
        obs_spectra = st.readspectrum(specfile.strip(),
                                      error=True,
                                      ftype='ascii')

        # smooth the observed spectrum
        # read in the std file and convert from magnitudes to fnu
        # then convert it to fwave (ergs/s/cm2/A)
        std_spectra = st.readspectrum(stdfile.strip(),
                                      error=False,
                                      ftype='ascii')
        std_spectra.flux = Spectrum.magtoflux(std_spectra.flux, stdzp)
        std_spectra.flux = Spectrum.fnutofwave(std_spectra.wavelength,
                                               std_spectra.flux)

        # Get the typical bandpass of the standard star,
        std_bandpass = np.diff(std_spectra.wavelength).mean()
        # Smooth the observed spectrum to that bandpass
        obs_spectra.flux = st.boxcar_smooth(obs_spectra, std_bandpass)
        # read in the extinction file (leave in magnitudes)
        ext_spectra = st.readspectrum(extfile.strip(),
                                      error=False,
                                      ftype='ascii')

        # determine the airmass if not specified
        if saltio.checkfornone(airmass) is None:
            message = 'Airmass was not supplied'
            raise SALTSpecError(message)

        # determine the exptime if not specified
        if saltio.checkfornone(exptime) is None:
            message = 'Exposure Time was not supplied'
            raise SALTSpecError(message)

        # calculate the calibrated spectra
        log.message('Calculating the calibration curve for %s' % specfile)
        cal_spectra = sensfunc(obs_spectra, std_spectra, ext_spectra, airmass,
                               exptime)

        # plot(cal_spectra.wavelength, cal_spectra.flux * std_spectra.flux)
        # fit the spectra--first take a first cut of the spectra
        # using the median absolute deviation to throw away bad points
        cmed = np.median(cal_spectra.flux)
        cmad = saltstat.mad(cal_spectra.flux)
        mask = (abs(cal_spectra.flux - cmed) < thresh * cmad)
        mask = np.logical_and(mask, (cal_spectra.flux > 0))

        # now fit the data
        # Fit using a gaussian process.
        if fitter == 'gaussian':
            from sklearn.gaussian_process import GaussianProcess
            #Instanciate a Gaussian Process model

            dy = obs_spectra.var[mask]**0.5
            dy /= obs_spectra.flux[mask] / cal_spectra.flux[mask]
            y = cal_spectra.flux[mask]
            gp = GaussianProcess(corr='squared_exponential',
                                 theta0=1e-2,
                                 thetaL=1e-4,
                                 thetaU=0.1,
                                 nugget=(dy / y)**2.0)
            X = np.atleast_2d(cal_spectra.wavelength[mask]).T
            # Fit to data using Maximum Likelihood Estimation of the parameters
            gp.fit(X, y)

            x = np.atleast_2d(cal_spectra.wavelength).T
            # Make the prediction on the meshed x-axis (ask for MSE as well)
            y_pred = gp.predict(x)

            cal_spectra.flux = y_pred

        else:
            fit = interfit(cal_spectra.wavelength[mask],
                           cal_spectra.flux[mask],
                           function=function,
                           order=order,
                           thresh=thresh,
                           niter=niter)
            fit.interfit()
            cal_spectra.flux = fit(cal_spectra.wavelength)

        # write the spectra out
        st.writespectrum(cal_spectra, outfile, ftype='ascii')