Exemplo n.º 1
0
 def plot_model(self):
     """
     Plot the star model.
     """
     x = np.arange(self.x0 - 5 * self.fwhm, self.x0 + 5 * self.fwhm)
     y = np.arange(self.y0 - 5 * self.fwhm, self.y0 + 5 * self.fwhm)
     xx, yy = np.meshgrid(x, y)
     star = self.psf.evaluate(np.array([xx, yy]))
     fig, ax = plt.subplots(1, 1)
     plot_image_simple(
         ax,
         star,
         title=f'Star model: A={self.amplitude:.2f}, fwhm={self.fwhm:.2f}',
         units='Arbitrary units')
     if parameters.DISPLAY:
         plt.show()
     if parameters.PdfPages:
         parameters.PdfPages.savefig()
Exemplo n.º 2
0
    def plot_spectrogram_comparison_simple(self, ax, title='', extent=None, dispersion=False):
        """Method to plot a spectrogram issued from data and compare it with simulations.

        Parameters
        ----------
        ax: Axes
            Axes instance of shape (4, 2).
        title: str, optional
            Title for the simulation plot (default: '').
        extent: array_like, optional
            Extent argument for imshow to crop plots (default: None).
        dispersion: bool, optional
            If True, plot a colored bar to see the associated wavelength color along the x axis (default: False).
        """
        lambdas = self.spectrum.lambdas
        sub = np.where((lambdas > parameters.LAMBDA_MIN) & (lambdas < parameters.LAMBDA_MAX))[0]
        sub = np.where(sub < self.spectrum.spectrogram_Nx)[0]
        if extent is not None:
            sub = np.where((lambdas > extent[0]) & (lambdas < extent[1]))[0]
        if len(sub) > 0:
            norm = np.max(self.data[:, sub])
            plot_image_simple(ax[0, 0], data=self.data[:, sub] / norm, title='Data', aspect='auto',
                              cax=ax[0, 1], vmin=0, vmax=1, units='1/max(data)')
            ax[0, 0].set_title('Data', fontsize=10, loc='center', color='white', y=0.8)
            plot_image_simple(ax[1, 0], data=self.model[:, sub] / norm, aspect='auto', cax=ax[1, 1], vmin=0, vmax=1,
                              units='1/max(data)')
            if dispersion:
                x = self.spectrum.chromatic_psf.table['Dx'][sub[5:-5]] + self.spectrum.spectrogram_x0 - sub[0]
                y = np.ones_like(x)
                ax[1, 0].scatter(x, y, cmap=from_lambda_to_colormap(self.lambdas[sub[5:-5]]), edgecolors='None',
                                 c=self.lambdas[sub[5:-5]],
                                 label='', marker='o', s=10)
            # p0 = ax.plot(lambdas, self.model(lambdas), label='model')
            # # ax.plot(self.lambdas, self.model_noconv, label='before conv')
            if title != '':
                ax[1, 0].set_title(title, fontsize=10, loc='center', color='white', y=0.8)
            residuals = (self.data - self.model)
            # residuals_err = self.spectrum.spectrogram_err / self.model
            norm = self.err
            residuals /= norm
            std = float(np.std(residuals[:, sub]))
            plot_image_simple(ax[2, 0], data=residuals[:, sub], vmin=-5 * std, vmax=5 * std, title='(Data-Model)/Err',
                              aspect='auto', cax=ax[2, 1], units='', cmap="bwr")
            ax[2, 0].set_title('(Data-Model)/Err', fontsize=10, loc='center', color='black', y=0.8)
            ax[2, 0].text(0.05, 0.05, f'mean={np.mean(residuals[:, sub]):.3f}\nstd={np.std(residuals[:, sub]):.3f}',
                          horizontalalignment='left', verticalalignment='bottom',
                          color='black', transform=ax[2, 0].transAxes)
            ax[0, 0].set_xticks(ax[2, 0].get_xticks()[1:-1])
            ax[0, 1].get_yaxis().set_label_coords(3.5, 0.5)
            ax[1, 1].get_yaxis().set_label_coords(3.5, 0.5)
            ax[2, 1].get_yaxis().set_label_coords(3.5, 0.5)
            ax[3, 1].remove()
            ax[3, 0].plot(self.lambdas[sub], self.data.sum(axis=0)[sub], label='Data')
            ax[3, 0].plot(self.lambdas[sub], self.model.sum(axis=0)[sub], label='Model')
            ax[3, 0].set_ylabel('Cross spectrum')
            ax[3, 0].set_xlabel(r'$\lambda$ [nm]')
            ax[3, 0].legend(fontsize=7)
            ax[3, 0].grid(True)
Exemplo n.º 3
0
 def plot_model(self):
     xx, yy = np.mgrid[0:parameters.CCD_IMSIZE:1, 0:parameters.CCD_IMSIZE:1]
     starfield = self.model(xx, yy)
     fig, ax = plt.subplots(1, 1)
     plot_image_simple(ax,
                       starfield,
                       scale="log10",
                       target_pixcoords=self.pixcoords)
     # im = plt.imshow(starfield, origin='lower', cmap='jet')
     # ax.grid(color='white', ls='solid')
     # ax.grid(True)
     # ax.set_xlabel('X [pixels]')
     # ax.set_ylabel('Y [pixels]')
     # ax.set_title(f'Star field model: fwhm={self.fwhm.value:.2f}')
     # cb = plt.colorbar(im, ax=ax)
     # cb.formatter.set_powerlimits((0, 0))
     # cb.locator = MaxNLocator(7, prune=None)
     # cb.update_ticks()
     # cb.set_label('Arbitrary units')  # ,fontsize=16)
     if parameters.DISPLAY:
         plt.show()
     if parameters.PdfPages:
         parameters.PdfPages.savefig()
Exemplo n.º 4
0
def remove_image_background_sextractor(data,
                                       sigma=3.0,
                                       box_size=(50, 50),
                                       filter_size=(3, 3),
                                       positive=False):
    sigma_clip = SigmaClip(sigma=sigma)
    bkg_estimator = SExtractorBackground()
    bkg = Background2D(data,
                       box_size,
                       filter_size=filter_size,
                       sigma_clip=sigma_clip,
                       bkg_estimator=bkg_estimator)
    data_wo_bkg = data - bkg.background
    if positive:
        data_wo_bkg -= np.min(data_wo_bkg)
    if parameters.DEBUG:
        fig, ax = plt.subplots(1, 2, figsize=(11, 5))
        plot_image_simple(ax[0], bkg.background, scale="lin")
        plot_image_simple(ax[1], data_wo_bkg, scale="symlog")
        fig.tight_layout()
        plt.show()
        if parameters.PdfPages:
            parameters.PdfPages.savefig()
    return data_wo_bkg
Exemplo n.º 5
0
 def plot_fit(self):
     if self.data.ndim == 1:
         fig, ax = plt.subplots(2, 1, figsize=(6, 6), sharex='all', gridspec_kw={'height_ratios': [5, 1]})
         data = np.copy(self.data)
         if self.bgd_model_func is not None:
             data = data + self.bgd_model_func(self.pixels)
         ax[0].errorbar(self.pixels, data, yerr=self.err, fmt='ro', label="Data")
         if len(self.outliers) > 0:
             ax[0].errorbar(self.outliers, data[self.outliers], yerr=self.err[self.outliers], fmt='go',
                            label=rf"Outliers ({self.sigma_clip}$\sigma$)")
         if self.bgd_model_func is not None:
             ax[0].plot(self.pixels, self.bgd_model_func(self.pixels), 'b--', label="fitted bgd")
         if self.guess is not None:
             if self.bgd_model_func is not None:
                 ax[0].plot(self.pixels, self.psf.evaluate(self.pixels, p=self.guess)
                            + self.bgd_model_func(self.pixels), 'k--', label="Guess")
             else:
                 ax[0].plot(self.pixels, self.psf.evaluate(self.pixels, p=self.guess),
                            'k--', label="Guess")
             self.psf.p = np.copy(self.p)
         model = np.copy(self.model)
         # if self.bgd_model_func is not None:
         #    model = self.model + self.bgd_model_func(self.pixels)
         ax[0].plot(self.pixels, model, 'b-', label="Model")
         ylim = list(ax[0].get_ylim())
         ylim[1] = 1.2 * np.max(self.model)
         ax[0].set_ylim(ylim)
         ax[0].set_ylabel('Transverse profile')
         ax[0].legend(loc=2, numpoints=1)
         ax[0].grid(True)
         txt = ""
         for ip, p in enumerate(self.input_labels):
             txt += f'{p}: {self.p[ip]:.4g}\n'
         ax[0].text(0.95, 0.95, txt, horizontalalignment='right', verticalalignment='top', transform=ax[0].transAxes)
         # residuals
         residuals = (data - model) / self.err
         residuals_err = np.ones_like(self.err)
         ax[1].errorbar(self.pixels, residuals, yerr=residuals_err, fmt='ro')
         if len(self.outliers) > 0:
             residuals_outliers = (data[self.outliers] - model[self.outliers]) / self.err[self.outliers]
             residuals_outliers_err = np.ones_like(residuals_outliers)
             ax[1].errorbar(self.outliers, residuals_outliers, yerr=residuals_outliers_err, fmt='go')
         ax[1].axhline(0, color='b')
         ax[1].grid(True)
         std = np.std(residuals)
         ax[1].set_ylim([-3. * std, 3. * std])
         ax[1].set_xlabel(ax[0].get_xlabel())
         ax[1].set_ylabel('(data-fit)/err')
         ax[0].set_xticks(ax[1].get_xticks()[1:-1])
         ax[0].get_yaxis().set_label_coords(-0.1, 0.5)
         ax[1].get_yaxis().set_label_coords(-0.1, 0.5)
         # fig.tight_layout()
         # fig.subplots_adjust(wspace=0, hspace=0)
     elif self.data.ndim == 2:
         gs_kw = dict(width_ratios=[3, 0.15], height_ratios=[1, 1, 1, 1])
         fig, ax = plt.subplots(nrows=4, ncols=2, figsize=(5, 7), gridspec_kw=gs_kw)
         norm = np.nanmax(self.data)
         plot_image_simple(ax[0, 0], data=self.model / norm, aspect='auto', cax=ax[0, 1], vmin=0, vmax=1,
                           units='1/max(data)')
         ax[0, 0].set_title("Model", fontsize=10, loc='center', color='white', y=0.8)
         plot_image_simple(ax[1, 0], data=self.data / norm, title='Data', aspect='auto',
                           cax=ax[1, 1], vmin=0, vmax=1, units='1/max(data)')
         ax[1, 0].set_title('Data', fontsize=10, loc='center', color='white', y=0.8)
         residuals = (self.data - self.model)
         # residuals_err = self.spectrum.spectrogram_err / self.model
         norm = self.err
         residuals /= norm
         std = float(np.std(residuals))
         plot_image_simple(ax[2, 0], data=residuals, vmin=-5 * std, vmax=5 * std, title='(Data-Model)/Err',
                           aspect='auto', cax=ax[2, 1], units='', cmap="bwr")
         ax[2, 0].set_title('(Data-Model)/Err', fontsize=10, loc='center', color='black', y=0.8)
         ax[2, 0].text(0.05, 0.05, f'mean={np.mean(residuals):.3f}\nstd={np.std(residuals):.3f}',
                       horizontalalignment='left', verticalalignment='bottom',
                       color='black', transform=ax[2, 0].transAxes)
         ax[0, 0].set_xticks(ax[2, 0].get_xticks()[1:-1])
         ax[0, 1].get_yaxis().set_label_coords(3.5, 0.5)
         ax[1, 1].get_yaxis().set_label_coords(3.5, 0.5)
         ax[2, 1].get_yaxis().set_label_coords(3.5, 0.5)
         ax[3, 1].remove()
         ax[3, 0].plot(np.arange(self.Nx), self.data.sum(axis=0), label='Data')
         ax[3, 0].plot(np.arange(self.Nx), self.model.sum(axis=0), label='Model')
         ax[3, 0].set_ylabel('Transverse sum')
         ax[3, 0].set_xlabel(r'X [pixels]')
         ax[3, 0].legend(fontsize=7)
         ax[3, 0].grid(True)
     else:
         raise ValueError(f"Data array must have dimension 1 or 2. Here data.ndim={self.data.ndim}.")
     if self.live_fit:  # pragma: no cover
         plt.draw()
         plt.pause(1e-8)
         plt.close()
     else:
         if parameters.DISPLAY:
             plt.show()
         else:
             plt.close(fig)
     if parameters.SAVE:  # pragma: no cover
         figname = os.path.splitext(self.filename)[0] + "_bestfit.pdf"
         self.my_logger.info(f"\n\tSave figure {figname}.")
         fig.savefig(figname, dpi=100, bbox_inches='tight')
     if parameters.PdfPages:
         parameters.PdfPages.savefig()