Exemplo n.º 1
0
    def classifyImage(self, imageFilename, classifiedFilename):
        """
        Classify minerals in an AVIRIS image using spectral angle mapper
        classification and save the results to a file.

        Args:
            imageFilename (str):      filename of the image to be classified
            classifiedFilename (str): filename of the classified image

        Returns:
            None
        """

        # open the image
        image = spectral.open_image(imageFilename)
        if self.inMemory:
            data = image.load()
        else:
            data = image.asarray()
        M = image.shape[0]
        N = image.shape[1]

        # define a resampler
        # TODO detect and scale units
        # TODO band resampler should do this
        resample = spectral.BandResampler([x/1000 for x in image.bands.centers],
                                          self.library.bands.centers)

        # allocate a zero-initialized MxN array for the classified image
        classified = numpy.zeros(shape=(M,N), dtype=numpy.uint16)

        # for each pixel in the image
        for x in range(M):

            for y in range(N):

                # read the pixel from the file
                pixel = data[x,y]

                # if it is not a no data pixel
                if not numpy.isclose(pixel[0], -0.005) and not pixel[0]==-50:

                    # resample the pixel ignoring NaNs from target bands that don't overlap
                    # TODO fix spectral library so that bands are in order
                    resampledPixel = numpy.nan_to_num(resample(pixel))

                    # calculate spectral angles
                    angles = spectral.spectral_angles(resampledPixel[numpy.newaxis,
                                                                     numpy.newaxis,
                                                                     ...],
                                                      self.library.spectra)

                    # normalize confidence values from [pi,0] to [0,1]
                    for z in range(angles.shape[2]):
                        angles[0,0,z] = 1-angles[0,0,z]/math.pi

                    # get index of class with largest confidence value
                    indexOfMax = numpy.argmax(angles)

                    # classify pixel if confidence above threshold
                    if angles[0,0,indexOfMax] > self.threshold:

                        # index from one (after zero for no data)
                        classified[x,y] = indexOfMax + 1

        # save the classified image to a file
        spectral.io.envi.save_classification(
            classifiedFilename,
            classified,
            class_names=['No data']+self.library.names,
            metadata={
                'data ignore value': 0,
                'description': 'COAL '+pycoal.version+' mineral classified image.',
                'map info': image.metadata.get('map info')
            })

        # remove unused classes from the image
        pycoal.mineral.MineralClassification.filterClasses(classifiedFilename)
Exemplo n.º 2
0
    def classify_image(self, image_file_name, classified_file_name, classifier_type=SAM):
        """
        Classify minerals in an AVIRIS image using specified classifier_type, either SAM, GML, KMeans, MDC. If none, defaults to spectral angle mapper
        classification and save the results to a file.
        Args:
            image_file_name (str):      filename of the image to be classified
            classified_file_name (str): filename of the classified image
            classifier_type (str):      Classifier type used
        Returns:
            None
        """
        start = time.time()
        logging.info("Starting Mineral Classification for image '%s', saving classified image to '%s'" 
            %(image_file_name, classified_file_name))
        # open the image
        image = spectral.open_image(image_file_name)
        if self.in_memory:
            data = image.load()
        else:
            data = image.asarray()
        M = image.shape[0]
        N = image.shape[1]

        # define a resampler
        # TODO detect and scale units
        # TODO band resampler should do this
        resample = spectral.BandResampler([x/1000 for x in image.bands.centers],
                                          self.library.bands.centers)
        if classifier_type == 'SAM':
        # this will run the default value, the Spectral angle mapper.             
        # allocate a zero-initialized MxN array for the classified image
            classified = numpy.zeros(shape=(M,N), dtype=numpy.uint16)

            # for each pixel in the image
            for x in range(M):

                for y in range(N):

                    # read the pixel from the file
                    pixel = data[x,y]

                    # if it is not a no data pixel
                    if not numpy.isclose(pixel[0], -0.005) and not pixel[0]==-50:

                        # resample the pixel ignoring NaNs from target bands that don't overlap
                        # TODO fix spectral library so that bands are in order
                        resampled_pixel = numpy.nan_to_num(resample(pixel))

                        # calculate spectral angles
                        angles = spectral.spectral_angles(resampled_pixel[numpy.newaxis,
                                                                         numpy.newaxis,
                                                                         ...],
                                                          self.library.spectra)

                        # normalize confidence values from [pi,0] to [0,1]
                        for z in range(angles.shape[2]):
                            angles[0,0,z] = 1-angles[0,0,z]/math.pi

                        # get index of class with largest confidence value
                        index_of_max = numpy.argmax(angles)

                        # classify pixel if confidence above threshold
                        if angles[0,0,index_of_max] > self.threshold:

                            # index from one (after zero for no data)
                            classified[x,y] = index_of_max + 1

        elif classifier_type == 'GML':
            # Gaussian Maximum Likelihood
            # the following is the method layed out in the spectral python documentation, needs to be converted to work with our formatting
            # create classifier 
            gmlc = GaussianClassifier(classes)
            # classify our training image and display the resulting classification map.
            clmap = gmlc.classify_image(image)
            v = imshow(classes=clmap)
            # mask out all the pixels not associated with a training class
            gtresults = clmap * (gt != 0)
            v = imshow(classes=gtresults)
            
        elif classifier_type == 'KMeans':
            # K-means generates clusters, this will read in pixels and figure out nearest cluster center
            # Currently only setup to run using default values of 20 iterations and 10 clusters
            # the following is the method layed out in the spectral python documentation, needs to be converted to work with our formatting
            for x in range(20)
            (m, c) = kmeans(imgage, 20, 30)
        
        # save the classified image to a file
        # save the classified image to a file
        spectral.io.envi.save_classification(
            classified_file_name,
            classified,
            class_names=['No data']+self.library.names,
            metadata={
                'data ignore value': 0,
                'description': 'COAL '+pycoal.version+' mineral classified image.',
                'map info': image.metadata.get('map info')
            })

        # remove unused classes from the image
        pycoal.mineral.MineralClassification.filter_classes(classified_file_name)
        end = time.time()
        seconds_elapsed = end - start
        m, s = divmod(seconds_elapsed, 60)
        h, m = divmod(m, 60)
        logging.info("Completed Mineral Classification. Time elapsed: '%d:%02d:%02d'" % (h, m, s))

    @staticmethod
    def filter_classes(classified_file_name):
        """
        Modify a classified image to remove unused classes.
        Args:
            classified_file_name (str): file of the classified image
        Returns:
            None
        """

        # open the image
        classified = spectral.open_image(classified_file_name)
        data = classified.asarray()
        M = classified.shape[0]
        N = classified.shape[1]

        # allocate a copy for reindexed pixels
        copy = numpy.zeros(shape=(M,N), dtype=numpy.uint16)

        # find classes actually present in the image
        classes = sorted(set(classified.asarray().flatten().tolist()))
        lookup = [classes.index(i) if i in classes else 0 for i in range(int(classified.metadata.get('classes')))]

        # reindex each pixel
        for x in range(M):
            for y in range(N):
                copy[x,y] = lookup[data[x,y,0]]

        # overwrite the file
        spectral.io.envi.save_classification(
            classified_file_name,
            copy,
            force=True,
            class_names=[classified.metadata.get('class names')[i] for i in classes],
            metadata=classified.metadata)

    @staticmethod
    def to_rgb(image_file_name, rgb_image_file_name, red=680.0, green=532.5, blue=472.5):
        """
        Generate a three-band RGB image from an AVIRIS image and save it to a file.
        Args:
            image_file_name (str):     filename of the source image
            rgb_image_file_name (str):  filename of the three-band RGB image
            red (float, optional):   wavelength in nanometers of the red band
            green (float, optional): wavelength in nanometers of the green band
            blue (float, optional):  wavelength in nanometers of the blue band
        Returns:
            None
        """

        # find the index of the first element in a list greater than the value
        start = time.time()
        logging.info("Starting generation of three-band RGB image from input file: '%s' with following RGB values R: '%s', G: '%s', B: '%s'" %(image_file_name, red, green, blue))
        def index_of_greater_than(elements, value):
            for index,element in enumerate(elements):
                if element > value:
                    return index

        # open the image
        image = spectral.open_image(image_file_name)

        # load the list of wavelengths as floats
        wavelength_strings = image.metadata.get('wavelength')
        wavelength_floats = list(map(float, wavelength_strings))

        # find the index of the red, green, and blue bands
        red_index = index_of_greater_than(wavelength_floats, red)
        green_index = index_of_greater_than(wavelength_floats, green)
        blue_index = index_of_greater_than(wavelength_floats, blue)

        # read the red, green, and blue bands from the image
        red_band = image[:,:,red_index]
        green_band = image[:,:,green_index]
        blue_band = image[:,:,blue_index]

        # remove no data pixels
        for band in [red_band, green_band, blue_band]:
            for x in range(band.shape[0]):
                for y in range(band.shape[1]):
                    if numpy.isclose(band[x,y,0], -0.005) or band[x,y,0]==-50:
                        band[x,y] = 0

        # combine the red, green, and blue bands into a three-band RGB image
        rgb = numpy.concatenate([red_band,green_band,blue_band], axis=2)

        # update the metadata
        rgb_metadata = image.metadata
        rgb_metadata['description'] = 'COAL '+pycoal.version+' three-band RGB image.'
        rgb_metadata['data ignore value'] = 0
        if wavelength_strings:
            rgb_metadata['wavelength'] = [
                wavelength_strings[red_index],
                wavelength_strings[green_index],
                wavelength_strings[blue_index]]
        if image.metadata.get('correction factors'):
            rgb_metadata['correction factors'] = [
                image.metadata.get('correction factors')[red_index],
                image.metadata.get('correction factors')[green_index],
                image.metadata.get('correction factors')[blue_index]]
        if image.metadata.get('fwhm'):
            rgb_metadata['fwhm'] = [
                image.metadata.get('fwhm')[red_index],
                image.metadata.get('fwhm')[green_index],
                image.metadata.get('fwhm')[blue_index]]
        if image.metadata.get('bbl'):
            rgb_metadata['bbl'] = [
                image.metadata.get('bbl')[red_index],
                image.metadata.get('bbl')[green_index],
                image.metadata.get('bbl')[blue_index]]
        if image.metadata.get('smoothing factors'):
            rgb_metadata['smoothing factors'] = [
                image.metadata.get('smoothing factors')[red_index],
                image.metadata.get('smoothing factors')[green_index],
                image.metadata.get('smoothing factors')[blue_index]]

        # save the three-band RGB image to a file
        logging.info("Saving RGB image as '%s'" % rgb_image_file_name)
        spectral.envi.save_image(rgb_image_file_name, rgb, metadata=rgb_metadata)
        end = time.time()
        seconds_elapsed = end - start
        m, s = divmod(seconds_elapsed, 60)
        h, m = divmod(m, 60)
        logging.info("Completed RGB image generation. Time elapsed: '%d:%02d:%02d'" % (h, m, s))

    @staticmethod
    def subset_spectral_library(spectral_library, class_names):

        # adapted from https://git.io/v9ThM

        """
        Create a copy of the spectral library containing only the named classes.
        Args:
            spectral_library (SpectralLibrary): ENVI spectral library
            class_names (str[]):                list of names of classes to include
        Returns:
            SpectralLibrary: subset of ENVI spectral library
        """

        # empty array for spectra
        spectra = numpy.empty((len(class_names), len(spectral_library.bands.centers)))

        # empty list for names
        names = []

        # copy class spectra and names
        for new_index, class_name in enumerate(class_names):
            old_index = spectral_library.names.index(class_name)
            spectra[new_index] = spectral_library.spectra[old_index]
            names.append(class_name)

        # copy metadata
        metadata = {'wavelength units': spectral_library.metadata.get('wavelength units'),
                    'spectra names': names,
                    'wavelength': spectral_library.bands.centers }

        # return new spectral library
        return spectral.io.envi.SpectralLibrary(spectra, metadata, {})
Exemplo n.º 3
0
def selectSpectra(Type, sensor, n=0, bands=None):
    """Subsets the earthlib spectral endmember library.

    Selects endmembers from specific class, then resamples the spectra to the wavelengths
    of a specific satellite sensor. This also performs random spectra selection.

    Args:
        Type: the type of spectra to select.
        sensor: the sensor type to resample wavelengths to.
        n: the number of random spectra to sample. n=0 returns all spectra.
        bands: list of bands to use. Accepts 0-based indices or a list of band names (e.g. ["B2", "B3", "B4"]).

    Returns:
        spectra: list of spectral endmembers resampled to a specific sensor's wavelengths.
    """
    import spectral

    from . import Read

    # get the level of the group selected
    level = getTypeLevel(Type)
    if level == 0:
        LOGGER.warning(
            f"Invalid group parameter: {Type}. Get valid values from earthlib.listTypes()."
        )
        return None

    # qc the collection selected
    if sensor not in listSensors():
        LOGGER.warning(
            f"Invalid sensor parameter: {sensor}. Get valid values from earthlib.listSensors()."
        )
        return None

    # read the spectral library into memory
    endmembers = Read.spectralLibrary(_endmember_path)

    # subset to specific bands, if set
    if bands is None:
        bands = range(len(getBands(sensor)))
    else:
        if type(bands[0]) is str:
            bands = getBandIndices(bands, sensor)

    # create a band resampler for this collection
    sensor_centers = np.array(collections[sensor]["band_centers"])[bands]
    sensor_fwhm = np.array(collections[sensor]["band_widths"])[bands]
    resampler = spectral.BandResampler(endmembers.band_centers,
                                       sensor_centers,
                                       fwhm2=sensor_fwhm)

    # select the endmembers from just the type passed
    key = f"LEVEL_{level}"
    indices = metadata[key] == Type
    spectra_raw = endmembers.spectra[indices, :]

    # subset them further if the n parameter is passed
    if n > 0:
        random_indices = np.random.randint(indices.sum(), size=n)
        spectra_raw = spectra_raw[random_indices, :]

    # loop through each spectrum and resample to the sensor wavelengths
    resampled = list()
    for i in range(spectra_raw.shape[0]):
        spectrum = resampler(spectra_raw[i, :])
        resampled.append(spectrum)

    return resampled
Exemplo n.º 4
0
def SAM(image_file_name,
        classified_file_name,
        library_file_name,
        scores_file_name=None,
        class_names=None,
        threshold=0.0,
        in_memory=False):
    """
    Parameter 'scores_file_name' optionally receives the path to where to save
    an image that holds all the SAM scores yielded for each pixel of the 
    classified image. No score image is create if not provided.

    The optional 'threshold' parameter defines a confidence value between zero
    and one below which SAM classifications will be discarded, otherwise all
    classifications will be included.

    In order to improve performance on systems with sufficient memory,
    enable the optional parameter to load entire images.

    Args:
        library_file_name (str):            filename of the spectral library
        image_file_name (str):              filename of the image to be classified
        classified_file_name (str):         filename of the classified image
        scores_file_name (str, optional):   filename of the image to hold each pixel's classification score
        class_names (str[], optional):      list of classes' names to include
        threshold (float, optional):        classification threshold
        in_memory (boolean, optional):      enable loading entire image

    Returns:
        None
    """

    # load and optionally subset the spectral library
    library = spectral.open_image(library_file_name)
    if class_names is not None:
        library = pycoal.mineral.MineralClassification.subset_spectral_library(
            library, class_names)

    # open the image
    image = spectral.open_image(image_file_name)
    if in_memory:
        data = image.load()
    else:
        data = image.asarray()
    M = image.shape[0]
    N = image.shape[1]

    # define a resampler
    # TODO detect and scale units
    # TODO band resampler should do this
    resample = spectral.BandResampler([x / 1000 for x in image.bands.centers],
                                      library.bands.centers)

    # allocate a zero-initialized MxN array for the classified image
    classified = numpy.zeros(shape=(M, N), dtype=numpy.uint16)

    if scores_file_name is not None:
        # allocate a zero-initialized MxN array for the scores image
        scored = numpy.zeros(shape=(M, N), dtype=numpy.float64)

    # for each pixel in the image
    for x in range(M):

        for y in range(N):

            # read the pixel from the file
            pixel = data[x, y]

            # if it is not a no data pixel
            if not numpy.isclose(pixel[0], -0.005) and not pixel[0] == -50:

                # resample the pixel ignoring NaNs from target bands that don't overlap
                # TODO fix spectral library so that bands are in order
                resampled_pixel = numpy.nan_to_num(resample(pixel))

                # calculate spectral angles
                angles = spectral.spectral_angles(
                    resampled_pixel[numpy.newaxis, numpy.newaxis, ...],
                    library.spectra)

                # normalize confidence values from [pi,0] to [0,1]
                for z in range(angles.shape[2]):
                    angles[0, 0, z] = 1 - angles[0, 0, z] / math.pi

                # get index of class with largest confidence value
                index_of_max = numpy.argmax(angles)

                # get confidence value of the classied pixel
                score = angles[0, 0, index_of_max]

                # classify pixel if confidence above threshold
                if score > threshold:

                    # index from one (after zero for no data)
                    classified[x, y] = index_of_max + 1

                    if scores_file_name is not None:
                        # store score value
                        scored[x, y] = score

    # save the classified image to a file
    spectral.io.envi.save_classification(
        classified_file_name,
        classified,
        class_names=['No data'] + library.names,
        metadata={
            'data ignore value': 0,
            'description':
            'COAL ' + pycoal.version + ' mineral classified image.',
            'map info': image.metadata.get('map info')
        })

    # remove unused classes from the image
    pycoal.mineral.MineralClassification.filter_classes(classified_file_name)

    if scores_file_name is not None:
        # save the scored image to a file
        spectral.io.envi.save_image(
            scores_file_name,
            scored,
            dtype=numpy.float64,
            metadata={
                'data ignore value': -50,
                'description':
                'COAL ' + pycoal.version + ' mineral scored image.',
                'map info': image.metadata.get('map info')
            })
Exemplo n.º 5
0
# load library
library_filename = '../pycoal/tests/s06av95a_envi.hdr'
library = spectral.open_image(library_filename)

# open the image
image_filename = '../pycoal/tests/images/ang20150422t163638_corr_v1e_img_4000-4010_550-560.hdr'

image = spectral.open_image(image_filename)

# access a pixel known
x = 4
y = 7
pixel = image[x, y]

# define a resampler
resample = spectral.BandResampler([x / 1000 for x in image.bands.centers],
                                  library.bands.centers)

# resample the pixel
resampled_pixel = numpy.nan_to_num(resample(pixel))

# calculate spectral angles
angles = spectral.spectral_angles(
    resampled_pixel[numpy.newaxis, numpy.newaxis, ...], library.spectra)

# normalize confidence values from [pi,0] to [0,1]
for z in range(angles.shape[2]):
    angles[0, 0, z] = 1 - angles[0, 0, z] / math.pi

# get angles, classes, and indices
angle_list = list(numpy.ndarray.flatten(angles))
angle_class_list = zip(angle_list, library.names, range(0, len(library.names)))
Exemplo n.º 6
0
def resample_variable(data, w, sensor):
    # 08/07/2011: faster way, but gives slightly different results
    worig = range(400, 2401)
    (wsensor, fwhm) = read_band_centre_fwhm_data(sensor, worig)
    resample = spectral.BandResampler(w, wsensor, fwhm2=fwhm)
    return resample(data)