Exemplo n.º 1
0
 def test_smacc_min_endmembers(self):
     '''Tests that smacc runs with min_endmember argument.'''
     # Without scaling numeric errors accumulate.
     scaled_data = self.data / 10000
     S, F, R = spy.smacc(scaled_data, 10)
     data_shape = scaled_data.shape
     H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
     assert (np.allclose(np.matmul(F, S) + R, H))
     assert (np.min(F) == 0.0)
     assert (len(S.shape) == 2 and S.shape[0] == 10 and S.shape[1] == 220)
Exemplo n.º 2
0
 def test_smacc_runs(self):
     '''Tests that smacc runs without additional arguments.'''
     # Without scaling numeric errors accumulate.
     scaled_data = self.data / 10000
     S, F, R = spy.smacc(scaled_data)
     data_shape = scaled_data.shape
     H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
     assert_allclose(np.matmul(F, S) + R, H)
     assert(np.min(F) == 0.0)
     assert(len(S.shape) == 2 and S.shape[0] == 9 and S.shape[1] == 220)
Exemplo n.º 3
0
 def test_smacc_max_residual_norm(self):
     '''Tests that smacc runs with max_residual_norm argument.'''
     # Without scaling numeric errors accumulate.
     scaled_data = self.data / 10000
     S, F, R = spy.smacc(scaled_data, 9, 0.8)
     data_shape = scaled_data.shape
     H = scaled_data.reshape(data_shape[0] * data_shape[1], data_shape[2])
     assert (np.allclose(np.matmul(F, S) + R, H))
     assert (np.min(F) == 0.0)
     residual_norms = np.einsum('ij,ij->i', R, R)
     assert (np.max(residual_norms) <= 0.8)
Exemplo n.º 4
0
 def test_smacc_minimal(self):
     '''Tests smacc correctness on minimal example.'''
     H = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [1.0, 1.0, 0.0],
                   [0.0, 1.0, 1.0]])
     S, F, R = spy.smacc(H)
     assert (np.allclose(np.matmul(F, S) + R, H))
     assert (np.min(F) == 0.0)
     expected_S = np.array([
         # First two longer ones.
         [1., 1., 0.],
         [0., 1., 1.],
         # First of the two shorted ones. Other can be expressed other 3.
         [1., 0., 0.],
     ])
     assert (np.array_equal(S, expected_S))