Exemplo n.º 1
0
def predict_url(urls, merge=True):
    """
    Function to predict an url
    """
    catch_url_error(urls)

    if not loaded:
        load_inference_model()
    urllib.request.urlretrieve(urls['urls'][0], '/tmp/file.wav')
    pred_lab, pred_prob =label_wav.predict('/tmp/file.wav', LABELS_FILE, MODEL_NAME, "wav_data:0","labels_softmax:0", 3)
    return format_prediction(pred_lab, pred_prob)
Exemplo n.º 2
0
def predict_data(audios, merge=True):
    """
    Function to predict an audio file
    """
    if not loaded:
        load_inference_model()
    if not isinstance(audios, list):
        audios = [audios]
    filenames = []
    for audio in audios:

        thename=audio['files'].filename
        thefile="/tmp/"+thename
        audio['files'].save(thefile)

    pred_lab, pred_prob =label_wav.predict(thefile, LABELS_FILE, MODEL_NAME, "wav_data:0","labels_softmax:0", 3)
    return format_prediction(pred_lab, pred_prob)
Exemplo n.º 3
0
def predict_data(args):
    """
    Function to predict an audio file
    """
    # # Check user configuration
    # update_with_query_conf(args)
    # conf = config.conf_dict

    if not loaded:
        load_inference_model()

    # Create a list with the path to the audios
    filenames = [f.filename for f in args['files']]

    pred_lab, pred_prob = label_wav.predict(filenames[0], LABELS_FILE,
                                            MODEL_NAME, "wav_data:0",
                                            "labels_softmax:0", 3)

    return format_prediction(pred_lab, pred_prob)
Exemplo n.º 4
0
def predict_url(args):
    """
    Function to predict an url
    """
    # # Check user configuration
    # update_with_query_conf(args)
    # conf = config.conf_dict

    catch_url_error(args['urls'])

    # Load model if needed
    if not loaded:
        load_inference_model()

    # Download the url
    urllib.request.urlretrieve(args['urls'][0], '/tmp/file.wav')
    pred_lab, pred_prob = label_wav.predict('/tmp/file.wav', LABELS_FILE,
                                            MODEL_NAME, "wav_data:0",
                                            "labels_softmax:0", 3)

    return format_prediction(pred_lab, pred_prob)