Exemplo n.º 1
0
def test_get_template_channel_sparsity():
    we = WaveformExtractor.load_from_folder('toy_waveforms')

    sparsity = get_template_channel_sparsity(we, method='best_channels', outputs='id', num_channels=5)
    print(sparsity)
    sparsity = get_template_channel_sparsity(we, method='best_channels', outputs='index', num_channels=5)
    print(sparsity)

    sparsity = get_template_channel_sparsity(we, method='radius', outputs='id', radius_um=50)
    print(sparsity)
    sparsity = get_template_channel_sparsity(we, method='radius', outputs='index', radius_um=50)
    print(sparsity)
    sparsity = get_template_channel_sparsity(we, method='threshold', outputs='id', threshold=3)
    print(sparsity)
    sparsity = get_template_channel_sparsity(we, method='threshold', outputs='index', threshold=3)
    print(sparsity)

    # load from folder because sorting properties must be loaded
    rec = load_extractor('toy_rec')
    sort = load_extractor('toy_sort')
    we = extract_waveforms(rec, sort, 'toy_waveforms_1')
    sparsity = get_template_channel_sparsity(we, method='by_property', outputs='id', by_property="group")
    print(sparsity)
    sparsity = get_template_channel_sparsity(we, method='by_property', outputs='index', by_property="group")

    print(sparsity)
def test_compute_quality_metrics_peak_sign():
    rec = load_extractor('toy_rec')
    sort = load_extractor('toy_sorting')

    # invert recording
    rec_inv = scale(rec, gain=-1.)

    we = WaveformExtractor.load_from_folder('toy_waveforms')
    print(we)

    we_inv = WaveformExtractor.create(rec_inv, sort, 'toy_waveforms_inv')
    we_inv.set_params(ms_before=3., ms_after=4., max_spikes_per_unit=500)
    we_inv.run_extract_waveforms(n_jobs=1, chunk_size=30000)
    print(we_inv)

    # without PC
    metrics = compute_quality_metrics(we,
                                      metric_names=['snr', 'amplitude_cutoff'],
                                      peak_sign="neg")
    metrics_inv = compute_quality_metrics(
        we_inv, metric_names=['snr', 'amplitude_cutoff'], peak_sign="pos")

    assert np.allclose(metrics["snr"].values, metrics_inv["snr"].values)
    assert np.allclose(metrics["amplitude_cutoff"].values,
                       metrics_inv["amplitude_cutoff"].values)
Exemplo n.º 3
0
###############################################################################
# A recording can be "dumped" (exported) to:
#  * a dict
#  * a json file
#  * a pickle file
#
# The "dump" operation is lazy, i.e., the traces are not exported.
# Only the information about how to reconstruct the recording are dumped:

from spikeinterface import load_extractor
from pprint import pprint

d = recording2.to_dict()
pprint(d)

recording2_loaded = load_extractor(d)
print(recording2_loaded)

###############################################################################
# The dictionary can also be dumped directly to a JSON file on disk:

recording2.dump('my_recording.json')

recording2_loaded = load_extractor('my_recording.json')
print(recording2_loaded)

###############################################################################
# **IMPORTANT**: the "dump" operation DOES NOT copy the traces to disk!
#
# If you wish to also store the traces in a compact way you need to use the
# :code:`save()` function. This operation is very useful to save traces obtained
###############################################################################
# A sorting can be "dumped" (exported) to:
#  * a dict
#  * a json file
#  * a pickle file
#
# The "dump" operation is lazy, i.e., the spike trains are not exported.
# Only the information about how to reconstruct the sorting are dumped:

from spikeinterface import load_extractor
from pprint import pprint

d = sorting2.to_dict()
pprint(d)

sorting2_loaded = load_extractor(d)
print(sorting2_loaded)

###############################################################################
# The dictionary can also be dumped directly to a JSON file on disk:

sorting2.dump('my_sorting.json')

sorting2_loaded = load_extractor('my_sorting.json')
print(sorting2_loaded)

###############################################################################
# **IMPORTANT**: the "dump" operation DOES NOT copy the spike trains to disk!
#
# If you wish to also store the spike trains in a compact way you need to use the
# :code:`save()` function: