def apply_transfo(im_src, im_dest, warp, interp='spline', rm_tmp=True):
    # create tmp dir and go in it
    tmp_dir = tmp_create()
    # copy warping field to tmp dir
    copy(warp, tmp_dir)
    warp = ''.join(extract_fname(warp)[1:])
    # go to tmp dir
    curdir = os.getcwd()
    os.chdir(tmp_dir)
    # save image and seg
    fname_src = 'src.nii.gz'
    im_src.save(fname_src)
    fname_dest = 'dest.nii.gz'
    im_dest.save(fname_dest)
    # apply warping field
    fname_src_reg = add_suffix(fname_src, '_reg')
    sct_apply_transfo.main(
        argv=['-i', fname_src, '-d', fname_dest, '-w', warp, '-x', interp])

    im_src_reg = Image(fname_src_reg)
    # get out of tmp dir
    os.chdir(curdir)
    if rm_tmp:
        # remove tmp dir
        rmtree(tmp_dir)
    # return res image
    return im_src_reg
def create_line(param, fname, coord, nz):
    """
    Create vertical line in 3D volume
    :param param:
    :param fname:
    :param coord:
    :param nz:
    :return:
    """

    # duplicate volume (assumes input file is nifti)
    copy(fname, 'line.nii', verbose=param.verbose)

    # set all voxels to zero
    run_proc(['sct_maths', '-i', 'line.nii', '-mul', '0', '-o', 'line.nii'], param.verbose)

    labels = []

    if isinstance(coord[0], Coordinate):
        for x, y, _, _ in coord:
            labels.extend([Coordinate([x, y, iz, 1]) for iz in range(nz)])
    else:
        # backwards compat
        labels.extend([Coordinate([coord[0], coord[1], iz, 1]) for iz in range(nz)])

    create_labels(Image("line.nii"), labels).save(path="line.nii")

    return 'line.nii'
Exemplo n.º 3
0
def create_line(param, fname, coord, nz):
    """
    Create vertical line in 3D volume
    :param param:
    :param fname:
    :param coord:
    :param nz:
    :return:
    """

    # duplicate volume (assumes input file is nifti)
    copy(fname, 'line.nii', verbose=param.verbose)

    # set all voxels to zero
    img = Image('line.nii')
    data = get_data_or_scalar('0', img.data)
    data_concat = concatenate_along_4th_dimension(img.data, data)
    img.data = np.prod(data_concat, axis=3)
    img.save()

    labels = []

    if isinstance(coord[0], Coordinate):
        for x, y, _, _ in coord:
            labels.extend([Coordinate([x, y, iz, 1]) for iz in range(nz)])
    else:
        # backwards compat
        labels.extend(
            [Coordinate([coord[0], coord[1], iz, 1]) for iz in range(nz)])

    create_labels(img, labels).save()

    return 'line.nii'
    def ifolder2tmp(self):
        # copy input image
        if self.fname_mask is not None:
            copy(self.fname_mask, self.tmp_dir)
            self.fname_mask = ''.join(extract_fname(self.fname_mask)[1:])
        else:
            printv('ERROR: No input image', self.verbose, 'error')

        # copy seg image
        if self.fname_sc is not None:
            copy(self.fname_sc, self.tmp_dir)
            self.fname_sc = ''.join(extract_fname(self.fname_sc)[1:])

        # copy ref image
        if self.fname_ref is not None:
            copy(self.fname_ref, self.tmp_dir)
            self.fname_ref = ''.join(extract_fname(self.fname_ref)[1:])

        # copy registered template
        if self.path_template is not None:
            copy(self.path_levels, self.tmp_dir)
            self.path_levels = ''.join(extract_fname(self.path_levels)[1:])

            self.atlas_roi_lst = []
            for fname_atlas_roi in os.listdir(self.path_atlas):
                if fname_atlas_roi.endswith('.nii.gz'):
                    tract_id = int(
                        fname_atlas_roi.split('_')[-1].split('.nii.gz')[0])
                    if tract_id < 36:  # Not interested in CSF
                        copy(os.path.join(self.path_atlas, fname_atlas_roi),
                             self.tmp_dir)
                        self.atlas_roi_lst.append(fname_atlas_roi)

        os.chdir(self.tmp_dir)  # go to tmp directory
Exemplo n.º 5
0
def register_data(im_src, im_dest, param_reg, path_copy_warp=None, rm_tmp=True):
    '''

    Parameters
    ----------
    im_src: class Image: source image
    im_dest: class Image: destination image
    param_reg: str: registration parameter
    path_copy_warp: path: path to copy the warping fields

    Returns: im_src_reg: class Image: source image registered on destination image
    -------

    '''
    # im_src and im_dest are already preprocessed (in theory: im_dest = mean_image)
    # binarize images to get seg
    im_src_seg = binarize(im_src, thr_min=1, thr_max=1)
    im_dest_seg = binarize(im_dest)
    # create tmp dir and go in it
    tmp_dir = tmp_create()
    curdir = os.getcwd()
    os.chdir(tmp_dir)
    # save image and seg
    fname_src = 'src.nii.gz'
    im_src.save(fname_src)
    fname_src_seg = 'src_seg.nii.gz'
    im_src_seg.save(fname_src_seg)
    fname_dest = 'dest.nii.gz'
    im_dest.save(fname_dest)
    fname_dest_seg = 'dest_seg.nii.gz'
    im_dest_seg.save(fname_dest_seg)
    # do registration using param_reg
    sct_register_multimodal.main(args=['-i', fname_src,
                                       '-d', fname_dest,
                                       '-iseg', fname_src_seg,
                                       '-dseg', fname_dest_seg,
                                       '-param', param_reg])

    # get registration result
    fname_src_reg = add_suffix(fname_src, '_reg')
    im_src_reg = Image(fname_src_reg)
    # get out of tmp dir
    os.chdir(curdir)

    # copy warping fields
    if path_copy_warp is not None and os.path.isdir(os.path.abspath(path_copy_warp)):
        path_copy_warp = os.path.abspath(path_copy_warp)
        file_src = extract_fname(fname_src)[1]
        file_dest = extract_fname(fname_dest)[1]
        fname_src2dest = 'warp_' + file_src + '2' + file_dest + '.nii.gz'
        fname_dest2src = 'warp_' + file_dest + '2' + file_src + '.nii.gz'
        copy(os.path.join(tmp_dir, fname_src2dest), path_copy_warp)
        copy(os.path.join(tmp_dir, fname_dest2src), path_copy_warp)

    if rm_tmp:
        # remove tmp dir
        rmtree(tmp_dir)
    # return res image
    return im_src_reg, fname_src2dest, fname_dest2src
    def tmp2ofolder(self):
        os.chdir(self.wrk_dir)  # go back to working directory

        printv('\nSave results files...', self.verbose, 'normal')
        printv('\n... measures saved in the files:', self.verbose, 'normal')
        for file_ in [self.fname_label, self.excel_name, self.pickle_name]:
            printv('\n  - ' + os.path.join(self.path_ofolder, file_), self.verbose, 'normal')
            copy(os.path.join(self.tmp_dir, file_), os.path.join(self.path_ofolder, file_))
Exemplo n.º 7
0
    def tmp2ofolder(self):

        os.chdir(self.curdir)  # go back to original directory

        printv('\nSave resulting files...', self.param.verbose, 'normal')
        for f in self.fname_metric_lst:  # Copy from tmp folder to ofolder
            copy(os.path.join(self.tmp_dir, self.fname_metric_lst[f]),
                     os.path.join(self.param.path_results, self.fname_metric_lst[f]))
def load_manual_gmseg(list_slices_target,
                      list_fname_manual_gmseg,
                      tmp_dir,
                      im_sc_seg_rpi,
                      new_res,
                      square_size_size_mm,
                      for_model=False,
                      fname_mask=None):
    if isinstance(list_fname_manual_gmseg, str):
        # consider fname_manual_gmseg as a list of file names to allow multiple manual GM segmentation
        list_fname_manual_gmseg = [list_fname_manual_gmseg]

    curdir = os.getcwd()

    for fname_manual_gmseg in list_fname_manual_gmseg:
        copy(fname_manual_gmseg, tmp_dir)
        # change fname level to only file name (path = tmp dir now)
        path_gm, file_gm, ext_gm = extract_fname(fname_manual_gmseg)
        fname_manual_gmseg = file_gm + ext_gm
        os.chdir(tmp_dir)

        im_manual_gmseg = Image(fname_manual_gmseg).change_orientation("RPI")

        if fname_mask is not None:
            cropper = ImageCropper(im_manual_gmseg)
            cropper.get_bbox_from_mask(fname_mask)
            im_manual_gmseg_crop = cropper.crop()
            im_manual_gmseg = im_manual_gmseg_crop

        # assert gmseg has the right number of slices
        assert im_manual_gmseg.data.shape[2] == len(
            list_slices_target
        ), 'ERROR: the manual GM segmentation has not the same number of slices than the image.'

        # interpolate gm to reference image
        nz_gmseg, nx_gmseg, ny_gmseg, nt_gmseg, pz_gmseg, px_gmseg, py_gmseg, pt_gmseg = im_manual_gmseg.dim

        list_im_gm = interpolate_im_to_ref(im_manual_gmseg,
                                           im_sc_seg_rpi,
                                           new_res=new_res,
                                           sq_size_size_mm=square_size_size_mm,
                                           interpolation_mode=0)

        # load gm seg in list of slices
        n_poped = 0
        for im_gm, slice_im in zip(list_im_gm, list_slices_target):
            if im_gm.data.max() == 0 and for_model:
                list_slices_target.pop(slice_im.id - n_poped)
                n_poped += 1
            else:
                slice_im.gm_seg.append(im_gm.data)
                wm_slice = (slice_im.im > 0) - im_gm.data
                slice_im.wm_seg.append(wm_slice)

        os.chdir(curdir)

    return list_slices_target
    def tmp2ofolder(self):
        """Copy output files to the ofolder."""
        os.chdir(self.curdir)  # go back to original directory

        if self.pa_coord != -1:  # If PMJ has been detected
            printv('\nSave resulting file...', self.verbose, 'normal')
            copy(os.path.abspath(os.path.join(self.tmp_dir, self.fname_out)),
                 os.path.abspath(os.path.join(self.path_out, self.fname_out)))

            return os.path.join(self.path_out, self.fname_out)
        else:
            return None
Exemplo n.º 10
0
def centerline2roi(fname_image, folder_output='.', verbose=0):
    """
    Tis method converts a binary centerline image to a .roi centerline file

    :param fname_image: filename of the binary centerline image, in RPI orientation
    :param folder_output: path to output folder where to copy .roi centerline
    :param verbose: adjusts the verbosity of the logging.
    :returns: filename of the .roi centerline that has been created
    """
    # TODO: change folder_output to fname_out
    path_data, file_data, ext_data = extract_fname(fname_image)
    fname_output = file_data + '.roi'

    date_now = datetime.datetime.now()
    ROI_TEMPLATE = 'Begin Marker ROI\n' \
                   '  Build version="7.0_33"\n' \
                   '  Annotation=""\n' \
                   '  Colour=0\n' \
                   '  Image source="{fname_segmentation}"\n' \
                   '  Created  "{creation_date}" by Operator ID="SCT"\n' \
                   '  Slice={slice_num}\n' \
                   '  Begin Shape\n' \
                   '    X={position_x}; Y={position_y}\n' \
                   '  End Shape\n' \
                   'End Marker ROI\n'

    im = Image(fname_image)
    nx, ny, nz, nt, px, py, pz, pt = im.dim
    coordinates_centerline = im.getNonZeroCoordinates(sorting='z')

    f = open(fname_output, "w")
    logger.info("Writing ROI file...")

    for coord in coordinates_centerline:
        coord_phys_center = im.transfo_pix2phys([[(nx - 1) / 2.0,
                                                  (ny - 1) / 2.0, coord.z]])[0]
        coord_phys = im.transfo_pix2phys([[coord.x, coord.y, coord.z]])[0]
        f.write(
            ROI_TEMPLATE.format(
                fname_segmentation=fname_image,
                creation_date=date_now.strftime("%d %B %Y %H:%M:%S.%f %Z"),
                slice_num=coord.z + 1,
                position_x=coord_phys_center[0] - coord_phys[0],
                position_y=coord_phys_center[1] - coord_phys[1]))

    f.close()

    if os.path.abspath(folder_output) != os.getcwd():
        copy(fname_output, folder_output)

    return fname_output
Exemplo n.º 11
0
    def ifolder2tmp(self):
        """Copy data to tmp folder."""
        if self.fname_im is not None:  # copy input image
            copy(self.fname_im, self.tmp_dir)
            self.fname_im = ''.join(extract_fname(self.fname_im)[1:])
        else:
            printv('ERROR: No input image', self.verbose, 'error')

        if self.fname_seg is not None:  # copy segmentation image
            copy(self.fname_seg, self.tmp_dir)
            self.fname_seg = ''.join(extract_fname(self.fname_seg)[1:])

        self.curdir = os.getcwd()
        os.chdir(self.tmp_dir)  # go to tmp directory
Exemplo n.º 12
0
    def ifolder2tmp(self):
        self.curdir = os.getcwd()
        # copy input image
        if self.param.fname_im is not None:
            copy(self.param.fname_im, self.tmp_dir)
            self.param.fname_im = ''.join(extract_fname(self.param.fname_im)[1:])
        else:
            printv('ERROR: No input image', self.param.verbose, 'error')

        # copy masked image
        if self.param.fname_seg is not None:
            copy(self.param.fname_seg, self.tmp_dir)
            self.param.fname_seg = ''.join(extract_fname(self.param.fname_seg)[1:])
        else:
            printv('ERROR: No mask image', self.param.verbose, 'error')

        os.chdir(self.tmp_dir)  # go to tmp directory
def warp_label(path_label, folder_label, file_label, fname_src, fname_transfo,
               path_out, list_labels_nn, verbose):
    """
    Warp label files according to info_label.txt file
    :param path_label:
    :param folder_label:
    :param file_label:
    :param fname_src:
    :param fname_transfo:
    :param path_out:
    :param list_labels_nn:
    :param verbose:
    :return:
    """
    try:
        # Read label file
        template_label_ids, template_label_names, template_label_file, combined_labels_ids, combined_labels_names, \
            combined_labels_id_groups, clusters_apriori = \
            spinalcordtoolbox.metadata.read_label_file(os.path.join(path_label, folder_label), file_label)
    except Exception as error:
        printv(
            '\nWARNING: Cannot warp label ' + folder_label + ': ' + str(error),
            1, 'warning')
        raise
    else:
        # create output folder
        if not os.path.exists(os.path.join(path_out, folder_label)):
            os.makedirs(os.path.join(path_out, folder_label))
        # Warp label
        for i in range(0, len(template_label_file)):
            fname_label = os.path.join(path_label, folder_label,
                                       template_label_file[i])
            # apply transfo
            run_proc(
                'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
                (fname_label, fname_src, fname_transfo,
                 os.path.join(path_out, folder_label, template_label_file[i]),
                 get_interp(template_label_file[i], list_labels_nn)),
                is_sct_binary=True,
                verbose=verbose)
        # Copy list.txt
        copy(os.path.join(path_label, folder_label, file_label),
             os.path.join(path_out, folder_label))
Exemplo n.º 14
0
def warp_label(path_label, folder_label, file_label, fname_src, fname_transfo,
               path_out, list_labels_nn, verbose):
    """
    Warp label files according to info_label.txt file
    :param path_label:
    :param folder_label:
    :param file_label:
    :param fname_src:
    :param fname_transfo:
    :param path_out:
    :param list_labels_nn:
    :param verbose:
    :return:
    """
    try:
        # Read label file
        template_label_ids, template_label_names, template_label_file, combined_labels_ids, combined_labels_names, \
            combined_labels_id_groups, clusters_apriori = \
            spinalcordtoolbox.metadata.read_label_file(os.path.join(path_label, folder_label), file_label)
    except Exception as error:
        printv(
            '\nWARNING: Cannot warp label ' + folder_label + ': ' + str(error),
            1, 'warning')
        raise
    else:
        # create output folder
        if not os.path.exists(os.path.join(path_out, folder_label)):
            os.makedirs(os.path.join(path_out, folder_label))
        # Warp label
        for i in range(0, len(template_label_file)):
            fname_label = os.path.join(path_label, folder_label,
                                       template_label_file[i])
            # apply transfo
            sct_apply_transfo.main([
                '-i', fname_label, '-d', fname_src, '-w', fname_transfo, '-o',
                os.path.join(path_out, folder_label, template_label_file[i]),
                '-x',
                get_interp(template_label_file[i], list_labels_nn), '-v', '0'
            ])
        # Copy list.txt
        copy(os.path.join(path_label, folder_label, file_label),
             os.path.join(path_out, folder_label))
Exemplo n.º 15
0
def moco(param):
    """
    Main function that performs motion correction.

    :param param:
    :return:
    """
    # retrieve parameters
    file_data = param.file_data
    file_target = param.file_target
    folder_mat = param.mat_moco  # output folder of mat file
    todo = param.todo
    suffix = param.suffix
    verbose = param.verbose

    # other parameters
    file_mask = 'mask.nii'

    printv('\nInput parameters:', param.verbose)
    printv('  Input file ............ ' + file_data, param.verbose)
    printv('  Reference file ........ ' + file_target, param.verbose)
    printv('  Polynomial degree ..... ' + param.poly, param.verbose)
    printv('  Smoothing kernel ...... ' + param.smooth, param.verbose)
    printv('  Gradient step ......... ' + param.gradStep, param.verbose)
    printv('  Metric ................ ' + param.metric, param.verbose)
    printv('  Sampling .............. ' + param.sampling, param.verbose)
    printv('  Todo .................. ' + todo, param.verbose)
    printv('  Mask  ................. ' + param.fname_mask, param.verbose)
    printv('  Output mat folder ..... ' + folder_mat, param.verbose)

    try:
        os.makedirs(folder_mat)
    except FileExistsError:
        pass

    # Get size of data
    printv('\nData dimensions:', verbose)
    im_data = Image(param.file_data)
    nx, ny, nz, nt, px, py, pz, pt = im_data.dim
    printv(
        ('  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt)),
        verbose)

    # copy file_target to a temporary file
    printv('\nCopy file_target to a temporary file...', verbose)
    file_target = "target.nii.gz"
    convert(param.file_target, file_target, verbose=0)

    # Check if user specified a mask
    if not param.fname_mask == '':
        # Check if this mask is soft (i.e., non-binary, such as a Gaussian mask)
        im_mask = Image(param.fname_mask)
        if not np.array_equal(im_mask.data, im_mask.data.astype(bool)):
            # If it is a soft mask, multiply the target by the soft mask.
            im = Image(file_target)
            im_masked = im.copy()
            im_masked.data = im.data * im_mask.data
            im_masked.save(
                verbose=0)  # silence warning about file overwritting

    # If scan is sagittal, split src and target along Z (slice)
    if param.is_sagittal:
        dim_sag = 2  # TODO: find it
        # z-split data (time series)
        im_z_list = split_data(im_data, dim=dim_sag, squeeze_data=False)
        file_data_splitZ = []
        for im_z in im_z_list:
            im_z.save(verbose=0)
            file_data_splitZ.append(im_z.absolutepath)
        # z-split target
        im_targetz_list = split_data(Image(file_target),
                                     dim=dim_sag,
                                     squeeze_data=False)
        file_target_splitZ = []
        for im_targetz in im_targetz_list:
            im_targetz.save(verbose=0)
            file_target_splitZ.append(im_targetz.absolutepath)
        # z-split mask (if exists)
        if not param.fname_mask == '':
            im_maskz_list = split_data(Image(file_mask),
                                       dim=dim_sag,
                                       squeeze_data=False)
            file_mask_splitZ = []
            for im_maskz in im_maskz_list:
                im_maskz.save(verbose=0)
                file_mask_splitZ.append(im_maskz.absolutepath)
        # initialize file list for output matrices
        file_mat = np.empty((nz, nt), dtype=object)

    # axial orientation
    else:
        file_data_splitZ = [file_data]  # TODO: make it absolute like above
        file_target_splitZ = [file_target]  # TODO: make it absolute like above
        # initialize file list for output matrices
        file_mat = np.empty((1, nt), dtype=object)

        # deal with mask
        if not param.fname_mask == '':
            convert(param.fname_mask, file_mask, squeeze_data=False, verbose=0)
            im_maskz_list = [Image(file_mask)
                             ]  # use a list with single element

    # Loop across file list, where each file is either a 2D volume (if sagittal) or a 3D volume (otherwise)
    # file_mat = tuple([[[] for i in range(nt)] for i in range(nz)])

    file_data_splitZ_moco = []
    printv(
        '\nRegister. Loop across Z (note: there is only one Z if orientation is axial)'
    )
    for file in file_data_splitZ:
        iz = file_data_splitZ.index(file)
        # Split data along T dimension
        # printv('\nSplit data along T dimension.', verbose)
        im_z = Image(file)
        list_im_zt = split_data(im_z, dim=3)
        file_data_splitZ_splitT = []
        for im_zt in list_im_zt:
            im_zt.save(verbose=0)
            file_data_splitZ_splitT.append(im_zt.absolutepath)
        # file_data_splitT = file_data + '_T'

        # Motion correction: initialization
        index = np.arange(nt)
        file_data_splitT_num = []
        file_data_splitZ_splitT_moco = []
        failed_transfo = [0 for i in range(nt)]

        # Motion correction: Loop across T
        for indice_index in sct_progress_bar(range(nt),
                                             unit='iter',
                                             unit_scale=False,
                                             desc="Z=" + str(iz) + "/" +
                                             str(len(file_data_splitZ) - 1),
                                             ascii=False,
                                             ncols=80):

            # create indices and display stuff
            it = index[indice_index]
            file_mat[iz][it] = os.path.join(
                folder_mat,
                "mat.Z") + str(iz).zfill(4) + 'T' + str(it).zfill(4)
            file_data_splitZ_splitT_moco.append(
                add_suffix(file_data_splitZ_splitT[it], '_moco'))
            # deal with masking (except in the 'apply' case, where masking is irrelevant)
            input_mask = None
            if not param.fname_mask == '' and not param.todo == 'apply':
                # Check if mask is binary
                if np.array_equal(im_maskz_list[iz].data,
                                  im_maskz_list[iz].data.astype(bool)):
                    # If it is, pass this mask into register() to be used
                    input_mask = im_maskz_list[iz]
                else:
                    # If not, do not pass this mask into register() because ANTs cannot handle non-binary masks.
                    #  Instead, multiply the input data by the Gaussian mask.
                    im = Image(file_data_splitZ_splitT[it])
                    im_masked = im.copy()
                    im_masked.data = im.data * im_maskz_list[iz].data
                    im_masked.save(
                        verbose=0)  # silence warning about file overwritting

            # run 3D registration
            failed_transfo[it] = register(param,
                                          file_data_splitZ_splitT[it],
                                          file_target_splitZ[iz],
                                          file_mat[iz][it],
                                          file_data_splitZ_splitT_moco[it],
                                          im_mask=input_mask)

            # average registered volume with target image
            # N.B. use weighted averaging: (target * nb_it + moco) / (nb_it + 1)
            if param.iterAvg and indice_index < 10 and failed_transfo[
                    it] == 0 and not param.todo == 'apply':
                im_targetz = Image(file_target_splitZ[iz])
                data_targetz = im_targetz.data
                data_mocoz = Image(file_data_splitZ_splitT_moco[it]).data
                data_targetz = (data_targetz * (indice_index + 1) +
                                data_mocoz) / (indice_index + 2)
                im_targetz.data = data_targetz
                im_targetz.save(verbose=0)

        # Replace failed transformation with the closest good one
        fT = [i for i, j in enumerate(failed_transfo) if j == 1]
        gT = [i for i, j in enumerate(failed_transfo) if j == 0]
        for it in range(len(fT)):
            abs_dist = [np.abs(gT[i] - fT[it]) for i in range(len(gT))]
            if not abs_dist == []:
                index_good = abs_dist.index(min(abs_dist))
                printv(
                    '  transfo #' + str(fT[it]) + ' --> use transfo #' +
                    str(gT[index_good]), verbose)
                # copy transformation
                copy(file_mat[iz][gT[index_good]] + 'Warp.nii.gz',
                     file_mat[iz][fT[it]] + 'Warp.nii.gz')
                # apply transformation
                sct_apply_transfo.main(argv=[
                    '-i', file_data_splitZ_splitT[fT[it]], '-d', file_target,
                    '-w', file_mat[iz][fT[it]] + 'Warp.nii.gz', '-o',
                    file_data_splitZ_splitT_moco[fT[it]], '-x', param.interp
                ])
            else:
                # exit program if no transformation exists.
                printv(
                    '\nERROR in ' + os.path.basename(__file__) +
                    ': No good transformation exist. Exit program.\n', verbose,
                    'error')
                sys.exit(2)

        # Merge data along T
        file_data_splitZ_moco.append(add_suffix(file, suffix))
        if todo != 'estimate':
            im_data_splitZ_splitT_moco = [
                Image(fname) for fname in file_data_splitZ_splitT_moco
            ]
            im_out = concat_data(im_data_splitZ_splitT_moco, 3)
            im_out.absolutepath = file_data_splitZ_moco[iz]
            im_out.save(verbose=0)

    # If sagittal, merge along Z
    if param.is_sagittal:
        # TODO: im_out.dim is incorrect: Z value is one
        im_data_splitZ_moco = [Image(fname) for fname in file_data_splitZ_moco]
        im_out = concat_data(im_data_splitZ_moco, 2)
        dirname, basename, ext = extract_fname(file_data)
        path_out = os.path.join(dirname, basename + suffix + ext)
        im_out.absolutepath = path_out
        im_out.save(verbose=0)

    return file_mat, im_out
Exemplo n.º 16
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_loglevel(verbose=verbose)

    fname_in = os.path.abspath(arguments.i)
    fname_seg = os.path.abspath(arguments.s)
    contrast = arguments.c
    path_template = os.path.abspath(arguments.t)
    scale_dist = arguments.scale_dist
    path_output = os.path.abspath(arguments.ofolder)
    fname_disc = arguments.discfile
    if fname_disc is not None:
        fname_disc = os.path.abspath(fname_disc)
    initz = arguments.initz
    initcenter = arguments.initcenter
    fname_initlabel = arguments.initlabel
    if fname_initlabel is not None:
        fname_initlabel = os.path.abspath(fname_initlabel)
    remove_temp_files = arguments.r
    clean_labels = arguments.clean_labels

    path_tmp = tmp_create(basename="label_vertebrae")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = cache_signature(input_files=[fname_in, fname_seg], )
    fname_cache = "straightening.cache"
    if (cache_valid(os.path.join(curdir, fname_cache), cache_sig)
            and os.path.isfile(
                os.path.join(curdir, "warp_curve2straight.nii.gz"))
            and os.path.isfile(
                os.path.join(curdir, "warp_straight2curve.nii.gz"))
            and os.path.isfile(os.path.join(curdir, "straight_ref.nii.gz"))):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, "straight_ref.nii.gz"),
             'straight_ref.nii.gz')
        # apply straightening
        s, o = run_proc([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(argv=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            '0',
        ])
        cache_save(os.path.join(path_output, fname_cache), cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = run_proc([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                    verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    sct_apply_transfo.main([
        '-i', 'segmentation.nii', '-d', 'data_straightr.nii', '-w',
        'warp_curve2straight.nii.gz', '-o', 'segmentation_straight.nii', '-x',
        'linear', '-v', '0'
    ])

    # Threshold segmentation at 0.5
    img = Image('segmentation_straight.nii')
    img.data = threshold(img.data, 0.5)
    img.save()

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        printv('\nApply straightening to disc labels...', verbose)
        run_proc(
            'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'label'),
            verbose=verbose)
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, 'labelz.nii.gz')
        if initcenter is not None:
            # find z centered in FOV
            nii = Image('segmentation.nii').change_orientation("RPI")
            nx, ny, nz, nt, px, py, pz, pt = nii.dim
            z_center = round(nz / 2)
            initz = [z_center, initcenter]
        if initz is not None:
            im_label = create_labels_along_segmentation(
                Image('segmentation.nii'), [tuple(initz)])
            im_label.save(fname_labelz)
        elif fname_initlabel is not None:
            Image(fname_initlabel).save(fname_labelz)
        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            # because verbose is also used for keeping temp files
            verbose_detect_c2c3 = 0 if remove_temp_files else 2
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if np.size(ind_label) == 0:
                printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit(1)
            im_label_c2c3.data[ind_label] = 3
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        printv('\nAnd apply straightening to label...', verbose)
        sct_apply_transfo.main([
            '-i', 'labelz.nii.gz', '-d', 'data_straightr.nii', '-w',
            'warp_curve2straight.nii.gz', '-o', 'labelz_straight.nii.gz', '-x',
            'nn', '-v', '0'
        ])
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. ' + str(init_disc), verbose)

        # apply laplacian filtering
        if arguments.laplacian:
            printv('\nApply Laplacian filter...', verbose)
            img = Image("data_straightr.nii")

            # apply std dev to each axis of the image
            sigmas = [1 for i in range(len(img.data.shape))]

            # adjust sigma based on voxel size
            sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)]

            # smooth data
            img.data = laplacian(img.data, sigmas)
            img.save()

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            arguments.param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    sct_apply_transfo.main([
        '-i', 'segmentation_straight_labeled.nii', '-d', 'segmentation.nii',
        '-w', 'warp_straight2curve.nii.gz', '-o', 'segmentation_labeled.nii',
        '-x', 'nn', '-v', '0'
    ])

    if clean_labels >= 1:
        printv('\nCleaning labeled segmentation:', verbose)
        im_labeled_seg = Image('segmentation_labeled.nii')
        im_seg = Image('segmentation.nii')
        if clean_labels >= 2:
            printv('  filling in missing label voxels ...', verbose)
            expand_labels(im_labeled_seg)
        printv('  removing labeled voxels outside segmentation...', verbose)
        crop_labels(im_labeled_seg, im_seg)
        printv('Done cleaning.', verbose)
        im_labeled_seg.save()

    # label discs
    printv('\nLabel discs...', verbose)
    printv('\nUn-straighten labeled discs...', verbose)
    run_proc(
        'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
        ('segmentation_straight_labeled_disc.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii',
         'label'),
        verbose=verbose,
        is_sct_binary=True,
    )

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"),
                         fname_seg_labeled)
    generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
                         os.path.join(path_output,
                                      "warp_curve2straight.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
                         os.path.join(path_output,
                                      "warp_straight2curve.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                         os.path.join(path_output, "straight_ref.nii.gz"),
                         verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp)

    # Generate QC report
    if arguments.qc is not None:
        path_qc = os.path.abspath(arguments.qc)
        qc_dataset = arguments.qc_dataset
        qc_subject = arguments.qc_subject
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=argv,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    display_viewer_syntax([fname_in, fname_seg_labeled],
                          colormaps=['', 'subcortical'],
                          opacities=['1', '0.5'])
def main(args=None):
    # initialize parameters
    param = Param()
    # call main function
    parser = get_parser()
    if args:
        arguments = parser.parse_args(args)
    else:
        arguments = parser.parse_args(args=None if sys.argv[1:] else ['--help'])

    fname_data = arguments.i
    fname_bvecs = arguments.bvec
    average = arguments.a
    verbose = int(arguments.v)
    init_sct(log_level=verbose, update=True)  # Update log level
    remove_temp_files = arguments.r
    path_out = arguments.ofolder

    fname_bvals = arguments.bval
    if arguments.bvalmin:
        param.bval_min = arguments.bvalmin

    # Initialization
    start_time = time.time()

    # printv(arguments)
    printv('\nInput parameters:', verbose)
    printv('  input file ............' + fname_data, verbose)
    printv('  bvecs file ............' + fname_bvecs, verbose)
    printv('  bvals file ............' + fname_bvals, verbose)
    printv('  average ...............' + str(average), verbose)

    # Get full path
    fname_data = os.path.abspath(fname_data)
    fname_bvecs = os.path.abspath(fname_bvecs)
    if fname_bvals:
        fname_bvals = os.path.abspath(fname_bvals)

    # Extract path, file and extension
    path_data, file_data, ext_data = extract_fname(fname_data)

    # create temporary folder
    path_tmp = tmp_create(basename="dmri_separate")

    # copy files into tmp folder and convert to nifti
    printv('\nCopy files into temporary folder...', verbose)
    ext = '.nii'
    dmri_name = 'dmri'
    b0_name = file_data + '_b0'
    b0_mean_name = b0_name + '_mean'
    dwi_name = file_data + '_dwi'
    dwi_mean_name = dwi_name + '_mean'

    if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)):
        printv('ERROR in convert.', 1, 'error')
    copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Get size of data
    im_dmri = Image(dmri_name + ext)
    printv('\nGet dimensions data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim
    printv('.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt), verbose)

    # Identify b=0 and DWI images
    printv(fname_bvals)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals, param.bval_min, verbose)

    # Split into T dimension
    printv('\nSplit along T dimension...', verbose)
    im_dmri_split_list = split_data(im_dmri, 3)
    for im_d in im_dmri_split_list:
        im_d.save()

    # Merge b=0 images
    printv('\nMerge b=0...', verbose)
    from sct_image import concat_data
    l = []
    for it in range(nb_b0):
        l.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) + ext)
    im_out = concat_data(l, 3).save(b0_name + ext)

    # Average b=0 images
    if average:
        printv('\nAverage b=0...', verbose)
        run_proc(['sct_maths', '-i', b0_name + ext, '-o', b0_mean_name + ext, '-mean', 't'], verbose)

    # Merge DWI
    l = []
    for it in range(nb_dwi):
        l.append(dmri_name + '_T' + str(index_dwi[it]).zfill(4) + ext)
    im_out = concat_data(l, 3).save(dwi_name + ext)

    # Average DWI images
    if average:
        printv('\nAverage DWI...', verbose)
        run_proc(['sct_maths', '-i', dwi_name + ext, '-o', dwi_mean_name + ext, '-mean', 't'], verbose)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data))
    fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data))
    fname_b0_mean = os.path.abspath(os.path.join(path_out, b0_mean_name + ext_data))
    fname_dwi_mean = os.path.abspath(os.path.join(path_out, dwi_mean_name + ext_data))
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, b0_name + ext), fname_b0, verbose=verbose)
    generate_output_file(os.path.join(path_tmp, dwi_name + ext), fname_dwi, verbose=verbose)
    if average:
        generate_output_file(os.path.join(path_tmp, b0_mean_name + ext), fname_b0_mean, verbose=verbose)
        generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext), fname_dwi_mean, verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's', verbose)

    return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    param = Param()
    if param.debug:
        printv('\n*** WARNING: DEBUG MODE ON ***\n')
    else:
        input_fname = arguments.i
        input_second_fname = ''
        output_fname = 'hausdorff_distance.txt'
        resample_to = 0.1

        if arguments.d is not None:
            input_second_fname = arguments.d
        if arguments.thinning is not None:
            param.thinning = bool(arguments.thinning)
        if arguments.resampling is not None:
            resample_to = arguments.resampling
        if arguments.o is not None:
            output_fname = arguments.o
        param.verbose = verbose

        tmp_dir = tmp_create()
        im1_name = "im1.nii.gz"
        copy(input_fname, os.path.join(tmp_dir, im1_name))
        if input_second_fname != '':
            im2_name = 'im2.nii.gz'
            copy(input_second_fname, os.path.join(tmp_dir, im2_name))
        else:
            im2_name = None

        curdir = os.getcwd()
        os.chdir(tmp_dir)

        # now = time.time()
        input_im1 = Image(
            resample_image(im1_name,
                           binary=True,
                           thr=0.5,
                           npx=resample_to,
                           npy=resample_to))
        input_im1.absolutepath = os.path.basename(input_fname)
        if im2_name is not None:
            input_im2 = Image(
                resample_image(im2_name,
                               binary=True,
                               thr=0.5,
                               npx=resample_to,
                               npy=resample_to))
            input_im2.absolutepath = os.path.basename(input_second_fname)
        else:
            input_im2 = None

        computation = ComputeDistances(input_im1, im2=input_im2, param=param)

        # TODO change back the orientatin of the thinned image
        if param.thinning:
            computation.thinning1.thinned_image.save(
                os.path.join(
                    curdir,
                    add_suffix(os.path.basename(input_fname), '_thinned')))
            if im2_name is not None:
                computation.thinning2.thinned_image.save(
                    os.path.join(
                        curdir,
                        add_suffix(os.path.basename(input_second_fname),
                                   '_thinned')))

        os.chdir(curdir)

        res_fic = open(output_fname, 'w')
        res_fic.write(computation.res)
        res_fic.write('\n\nInput 1: ' + input_fname)
        res_fic.write('\nInput 2: ' + input_second_fname)
        res_fic.close()
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv if argv else ['--help'])
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # initializations
    initz = ''
    initcenter = ''
    fname_initlabel = ''
    file_labelz = 'labelz.nii.gz'
    param = Param()

    fname_in = os.path.abspath(arguments.i)
    fname_seg = os.path.abspath(arguments.s)
    contrast = arguments.c
    path_template = os.path.abspath(arguments.t)
    scale_dist = arguments.scale_dist
    path_output = arguments.ofolder
    param.path_qc = arguments.qc
    if arguments.discfile is not None:
        fname_disc = os.path.abspath(arguments.discfile)
    else:
        fname_disc = None
    if arguments.initz is not None:
        initz = arguments.initz
        if len(initz) != 2:
            raise ValueError(
                '--initz takes two arguments: position in superior-inferior direction, label value'
            )
    if arguments.initcenter is not None:
        initcenter = arguments.initcenter
    # if user provided text file, parse and overwrite arguments
    if arguments.initfile is not None:
        file = open(arguments.initfile, 'r')
        initfile = ' ' + file.read().replace('\n', '')
        arg_initfile = initfile.split(' ')
        for idx_arg, arg in enumerate(arg_initfile):
            if arg == '-initz':
                initz = [int(x) for x in arg_initfile[idx_arg + 1].split(',')]
                if len(initz) != 2:
                    raise ValueError(
                        '--initz takes two arguments: position in superior-inferior direction, label value'
                    )
            if arg == '-initcenter':
                initcenter = int(arg_initfile[idx_arg + 1])
    if arguments.initlabel is not None:
        # get absolute path of label
        fname_initlabel = os.path.abspath(arguments.initlabel)
    if arguments.param is not None:
        param.update(arguments.param[0])
    remove_temp_files = arguments.r
    clean_labels = arguments.clean_labels
    laplacian = arguments.laplacian

    path_tmp = tmp_create(basename="label_vertebrae")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder...', verbose)
    Image(fname_in).save(os.path.join(path_tmp, "data.nii"))
    Image(fname_seg).save(os.path.join(path_tmp, "segmentation.nii"))

    # Go go temp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Straighten spinal cord
    printv('\nStraighten spinal cord...', verbose)
    # check if warp_curve2straight and warp_straight2curve already exist (i.e. no need to do it another time)
    cache_sig = cache_signature(input_files=[fname_in, fname_seg], )
    cachefile = os.path.join(curdir, "straightening.cache")
    if cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, "warp_curve2straight.nii.gz")) and os.path.isfile(
                    os.path.join(
                        curdir,
                        "warp_straight2curve.nii.gz")) and os.path.isfile(
                            os.path.join(curdir, "straight_ref.nii.gz")):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, "warp_curve2straight.nii.gz"),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, "warp_straight2curve.nii.gz"),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, "straight_ref.nii.gz"),
             'straight_ref.nii.gz')
        # apply straightening
        s, o = run_proc([
            'sct_apply_transfo', '-i', 'data.nii', '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'data_straight.nii'
        ])
    else:
        sct_straighten_spinalcord.main(argv=[
            '-i',
            'data.nii',
            '-s',
            'segmentation.nii',
            '-r',
            str(remove_temp_files),
            '-v',
            str(verbose),
        ])
        cache_save(cachefile, cache_sig)

    # resample to 0.5mm isotropic to match template resolution
    printv('\nResample to 0.5mm isotropic...', verbose)
    s, o = run_proc([
        'sct_resample', '-i', 'data_straight.nii', '-mm', '0.5x0.5x0.5', '-x',
        'linear', '-o', 'data_straightr.nii'
    ],
                    verbose=verbose)

    # Apply straightening to segmentation
    # N.B. Output is RPI
    printv('\nApply straightening to segmentation...', verbose)
    run_proc(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation.nii', 'data_straightr.nii',
         'warp_curve2straight.nii.gz', 'segmentation_straight.nii', 'Linear'),
        verbose=verbose,
        is_sct_binary=True,
    )
    # Threshold segmentation at 0.5
    run_proc([
        'sct_maths', '-i', 'segmentation_straight.nii', '-thr', '0.5', '-o',
        'segmentation_straight.nii'
    ], verbose)

    # If disc label file is provided, label vertebrae using that file instead of automatically
    if fname_disc:
        # Apply straightening to disc-label
        printv('\nApply straightening to disc labels...', verbose)
        run_proc(
            'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
            (fname_disc, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labeldisc_straight.nii.gz', 'label'),
            verbose=verbose)
        label_vert('segmentation_straight.nii',
                   'labeldisc_straight.nii.gz',
                   verbose=1)

    else:
        # create label to identify disc
        printv('\nCreate label to identify disc...', verbose)
        fname_labelz = os.path.join(path_tmp, file_labelz)
        if initz or initcenter:
            if initcenter:
                # find z centered in FOV
                nii = Image('segmentation.nii').change_orientation("RPI")
                nx, ny, nz, nt, px, py, pz, pt = nii.dim  # Get dimensions
                z_center = int(np.round(nz / 2))  # get z_center
                initz = [z_center, initcenter]

            im_label = create_labels_along_segmentation(
                Image('segmentation.nii'), [(initz[0], initz[1])])
            im_label.data = dilate(im_label.data, 3, 'ball')
            im_label.save(fname_labelz)

        elif fname_initlabel:
            Image(fname_initlabel).save(fname_labelz)

        else:
            # automatically finds C2-C3 disc
            im_data = Image('data.nii')
            im_seg = Image('segmentation.nii')
            if not remove_temp_files:  # because verbose is here also used for keeping temp files
                verbose_detect_c2c3 = 2
            else:
                verbose_detect_c2c3 = 0
            im_label_c2c3 = detect_c2c3(im_data,
                                        im_seg,
                                        contrast,
                                        verbose=verbose_detect_c2c3)
            ind_label = np.where(im_label_c2c3.data)
            if not np.size(ind_label) == 0:
                im_label_c2c3.data[ind_label] = 3
            else:
                printv(
                    'Automatic C2-C3 detection failed. Please provide manual label with sct_label_utils',
                    1, 'error')
                sys.exit()
            im_label_c2c3.save(fname_labelz)

        # dilate label so it is not lost when applying warping
        dilate(Image(fname_labelz), 3, 'ball').save(fname_labelz)

        # Apply straightening to z-label
        printv('\nAnd apply straightening to label...', verbose)
        run_proc(
            'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
            (file_labelz, 'data_straightr.nii', 'warp_curve2straight.nii.gz',
             'labelz_straight.nii.gz', 'NearestNeighbor'),
            verbose=verbose,
            is_sct_binary=True,
        )
        # get z value and disk value to initialize labeling
        printv('\nGet z and disc values from straight label...', verbose)
        init_disc = get_z_and_disc_values_from_label('labelz_straight.nii.gz')
        printv('.. ' + str(init_disc), verbose)

        # apply laplacian filtering
        if laplacian:
            printv('\nApply Laplacian filter...', verbose)
            run_proc([
                'sct_maths', '-i', 'data_straightr.nii', '-laplacian', '1',
                '-o', 'data_straightr.nii'
            ], verbose)

        # detect vertebral levels on straight spinal cord
        init_disc[1] = init_disc[1] - 1
        vertebral_detection('data_straightr.nii',
                            'segmentation_straight.nii',
                            contrast,
                            param,
                            init_disc=init_disc,
                            verbose=verbose,
                            path_template=path_template,
                            path_output=path_output,
                            scale_dist=scale_dist)

    # un-straighten labeled spinal cord
    printv('\nUn-straighten labeling...', verbose)
    run_proc(
        'isct_antsApplyTransforms -d 3 -i %s -r %s -t %s -o %s -n %s' %
        ('segmentation_straight_labeled.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled.nii',
         'NearestNeighbor'),
        verbose=verbose,
        is_sct_binary=True,
    )

    if clean_labels:
        # Clean labeled segmentation
        printv(
            '\nClean labeled segmentation (correct interpolation errors)...',
            verbose)
        clean_labeled_segmentation('segmentation_labeled.nii',
                                   'segmentation.nii',
                                   'segmentation_labeled.nii')

    # label discs
    printv('\nLabel discs...', verbose)
    printv('\nUn-straighten labeled discs...', verbose)
    run_proc(
        'sct_apply_transfo -i %s -d %s -w %s -o %s -x %s' %
        ('segmentation_straight_labeled_disc.nii', 'segmentation.nii',
         'warp_straight2curve.nii.gz', 'segmentation_labeled_disc.nii',
         'label'),
        verbose=verbose,
        is_sct_binary=True,
    )

    # come back
    os.chdir(curdir)

    # Generate output files
    path_seg, file_seg, ext_seg = extract_fname(fname_seg)
    fname_seg_labeled = os.path.join(path_output,
                                     file_seg + '_labeled' + ext_seg)
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, "segmentation_labeled.nii"),
                         fname_seg_labeled)
    generate_output_file(
        os.path.join(path_tmp, "segmentation_labeled_disc.nii"),
        os.path.join(path_output, file_seg + '_labeled_discs' + ext_seg))
    # copy straightening files in case subsequent SCT functions need them
    generate_output_file(os.path.join(path_tmp, "warp_curve2straight.nii.gz"),
                         os.path.join(path_output,
                                      "warp_curve2straight.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "warp_straight2curve.nii.gz"),
                         os.path.join(path_output,
                                      "warp_straight2curve.nii.gz"),
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, "straight_ref.nii.gz"),
                         os.path.join(path_output, "straight_ref.nii.gz"),
                         verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp)

    # Generate QC report
    if param.path_qc is not None:
        path_qc = os.path.abspath(arguments.qc)
        qc_dataset = arguments.qc_dataset
        qc_subject = arguments.qc_subject
        labeled_seg_file = os.path.join(path_output,
                                        file_seg + '_labeled' + ext_seg)
        generate_qc(fname_in,
                    fname_seg=labeled_seg_file,
                    args=argv,
                    path_qc=os.path.abspath(path_qc),
                    dataset=qc_dataset,
                    subject=qc_subject,
                    process='sct_label_vertebrae')

    display_viewer_syntax([fname_in, fname_seg_labeled],
                          colormaps=['', 'subcortical'],
                          opacities=['1', '0.5'])
Exemplo n.º 20
0
    def straighten(self):
        """
        Straighten spinal cord. Steps: (everything is done in physical space)
        1. open input image and centreline image
        2. extract bspline fitting of the centreline, and its derivatives
        3. compute length of centerline
        4. compute and generate straight space
        5. compute transformations
            for each voxel of one space: (done using matrices --> improves speed by a factor x300)
                a. determine which plane of spinal cord centreline it is included
                b. compute the position of the voxel in the plane (X and Y distance from centreline, along the plane)
                c. find the correspondant centreline point in the other space
                d. find the correspondance of the voxel in the corresponding plane
        6. generate warping fields for each transformations
        7. write warping fields and apply them

        step 5.b: how to find the corresponding plane?
            The centerline plane corresponding to a voxel correspond to the nearest point of the centerline.
            However, we need to compute the distance between the voxel position and the plane to be sure it is part of the plane and not too distant.
            If it is more far than a threshold, warping value should be 0.

        step 5.d: how to make the correspondance between centerline point in both images?
            Both centerline have the same lenght. Therefore, we can map centerline point via their position along the curve.
            If we use the same number of points uniformely along the spinal cord (1000 for example), the correspondance is straight-forward.

        :return:
        """
        # Initialization
        fname_anat = self.input_filename
        fname_centerline = self.centerline_filename
        fname_output = self.output_filename
        remove_temp_files = self.remove_temp_files
        verbose = self.verbose
        interpolation_warp = self.interpolation_warp  # TODO: remove this

        # start timer
        start_time = time.time()

        # Extract path/file/extension
        path_anat, file_anat, ext_anat = extract_fname(fname_anat)

        path_tmp = tmp_create(basename="straighten_spinalcord")

        # Copying input data to tmp folder
        logger.info('Copy files to tmp folder...')
        Image(fname_anat,
              check_sform=True).save(os.path.join(path_tmp, "data.nii"))
        Image(fname_centerline, check_sform=True).save(
            os.path.join(path_tmp, "centerline.nii.gz"))

        if self.use_straight_reference:
            Image(self.centerline_reference_filename, check_sform=True).save(
                os.path.join(path_tmp, "centerline_ref.nii.gz"))
        if self.discs_input_filename != '':
            Image(self.discs_input_filename, check_sform=True).save(
                os.path.join(path_tmp, "labels_input.nii.gz"))
        if self.discs_ref_filename != '':
            Image(self.discs_ref_filename, check_sform=True).save(
                os.path.join(path_tmp, "labels_ref.nii.gz"))

        # go to tmp folder
        curdir = os.getcwd()
        os.chdir(path_tmp)

        # Change orientation of the input centerline into RPI
        image_centerline = Image("centerline.nii.gz").change_orientation(
            "RPI").save("centerline_rpi.nii.gz", mutable=True)

        # Get dimension
        nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim
        if self.speed_factor != 1.0:
            intermediate_resampling = True
            px_r, py_r, pz_r = px * self.speed_factor, py * self.speed_factor, pz * self.speed_factor
        else:
            intermediate_resampling = False

        if intermediate_resampling:
            mv('centerline_rpi.nii.gz', 'centerline_rpi_native.nii.gz')
            pz_native = pz
            # TODO: remove system call
            run_proc([
                'sct_resample', '-i', 'centerline_rpi_native.nii.gz', '-mm',
                str(px_r) + 'x' + str(py_r) + 'x' + str(pz_r), '-o',
                'centerline_rpi.nii.gz'
            ])
            image_centerline = Image('centerline_rpi.nii.gz')
            nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim

        if np.min(image_centerline.data) < 0 or np.max(
                image_centerline.data) > 1:
            image_centerline.data[image_centerline.data < 0] = 0
            image_centerline.data[image_centerline.data > 1] = 1
            image_centerline.save()

        # 2. extract bspline fitting of the centerline, and its derivatives
        img_ctl = Image('centerline_rpi.nii.gz')
        centerline = _get_centerline(img_ctl, self.param_centerline, verbose)
        number_of_points = centerline.number_of_points

        # ==========================================================================================
        logger.info('Create the straight space and the safe zone')
        # 3. compute length of centerline
        # compute the length of the spinal cord based on fitted centerline and size of centerline in z direction

        # Computation of the safe zone.
        # The safe zone is defined as the length of the spinal cord for which an axial segmentation will be complete
        # The safe length (to remove) is computed using the safe radius (given as parameter) and the angle of the
        # last centerline point with the inferior-superior direction. Formula: Ls = Rs * sin(angle)
        # Calculate Ls for both edges and remove appropriate number of centerline points
        radius_safe = 0.0  # mm

        # inferior edge
        u = centerline.derivatives[0]
        v = np.array([0, 0, -1])

        angle_inferior = np.arctan2(np.linalg.norm(np.cross(u, v)),
                                    np.dot(u, v))
        length_safe_inferior = radius_safe * np.sin(angle_inferior)

        # superior edge
        u = centerline.derivatives[-1]
        v = np.array([0, 0, 1])
        angle_superior = np.arctan2(np.linalg.norm(np.cross(u, v)),
                                    np.dot(u, v))
        length_safe_superior = radius_safe * np.sin(angle_superior)

        # remove points
        inferior_bound = bisect.bisect(centerline.progressive_length,
                                       length_safe_inferior) - 1
        superior_bound = centerline.number_of_points - bisect.bisect(
            centerline.progressive_length_inverse, length_safe_superior)

        z_centerline = centerline.points[:, 2]
        length_centerline = centerline.length
        size_z_centerline = z_centerline[-1] - z_centerline[0]

        # compute the size factor between initial centerline and straight bended centerline
        factor_curved_straight = length_centerline / size_z_centerline
        middle_slice = (z_centerline[0] + z_centerline[-1]) / 2.0

        bound_curved = [
            z_centerline[inferior_bound], z_centerline[superior_bound]
        ]
        bound_straight = [(z_centerline[inferior_bound] - middle_slice) *
                          factor_curved_straight + middle_slice,
                          (z_centerline[superior_bound] - middle_slice) *
                          factor_curved_straight + middle_slice]

        logger.info('Length of spinal cord: {}'.format(length_centerline))
        logger.info(
            'Size of spinal cord in z direction: {}'.format(size_z_centerline))
        logger.info('Ratio length/size: {}'.format(factor_curved_straight))
        logger.info(
            'Safe zone boundaries (curved space): {}'.format(bound_curved))
        logger.info(
            'Safe zone boundaries (straight space): {}'.format(bound_straight))

        # 4. compute and generate straight space
        # points along curved centerline are already regularly spaced.
        # calculate position of points along straight centerline

        # Create straight NIFTI volumes.
        # ==========================================================================================
        # TODO: maybe this if case is not needed?
        if self.use_straight_reference:
            image_centerline_pad = Image('centerline_rpi.nii.gz')
            nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim

            fname_ref = 'centerline_ref_rpi.nii.gz'
            image_centerline_straight = Image('centerline_ref.nii.gz') \
                .change_orientation("RPI") \
                .save(fname_ref, mutable=True)
            centerline_straight = _get_centerline(image_centerline_straight,
                                                  self.param_centerline,
                                                  verbose)
            nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim

            # Prepare warping fields headers
            hdr_warp = image_centerline_pad.hdr.copy()
            hdr_warp.set_data_dtype('float32')
            hdr_warp_s = image_centerline_straight.hdr.copy()
            hdr_warp_s.set_data_dtype('float32')

            if self.discs_input_filename != "" and self.discs_ref_filename != "":
                discs_input_image = Image('labels_input.nii.gz')
                coord = discs_input_image.getNonZeroCoordinates(
                    sorting='z', reverse_coord=True)
                coord_physical = []
                for c in coord:
                    c_p = discs_input_image.transfo_pix2phys([[c.x, c.y, c.z]
                                                              ]).tolist()[0]
                    c_p.append(c.value)
                    coord_physical.append(c_p)
                centerline.compute_vertebral_distribution(coord_physical)
                centerline.save_centerline(
                    image=discs_input_image,
                    fname_output='discs_input_image.nii.gz')

                discs_ref_image = Image('labels_ref.nii.gz')
                coord = discs_ref_image.getNonZeroCoordinates(
                    sorting='z', reverse_coord=True)
                coord_physical = []
                for c in coord:
                    c_p = discs_ref_image.transfo_pix2phys([[c.x, c.y,
                                                             c.z]]).tolist()[0]
                    c_p.append(c.value)
                    coord_physical.append(c_p)
                centerline_straight.compute_vertebral_distribution(
                    coord_physical)
                centerline_straight.save_centerline(
                    image=discs_ref_image,
                    fname_output='discs_ref_image.nii.gz')

        else:
            logger.info(
                'Pad input volume to account for spinal cord length...')

            start_point, end_point = bound_straight[0], bound_straight[1]
            offset_z = 0

            # if the destination image is resampled, we still create the straight reference space with the native
            # resolution.
            # TODO: Maybe this if case is not needed?
            if intermediate_resampling:
                padding_z = int(
                    np.ceil(1.5 *
                            ((length_centerline - size_z_centerline) / 2.0) /
                            pz_native))
                run_proc([
                    'sct_image', '-i', 'centerline_rpi_native.nii.gz', '-o',
                    'tmp.centerline_pad_native.nii.gz', '-pad',
                    '0,0,' + str(padding_z)
                ])
                image_centerline_pad = Image('centerline_rpi_native.nii.gz')
                nx, ny, nz, nt, px, py, pz, pt = image_centerline_pad.dim
                start_point_coord_native = image_centerline_pad.transfo_phys2pix(
                    [[0, 0, start_point]])[0]
                end_point_coord_native = image_centerline_pad.transfo_phys2pix(
                    [[0, 0, end_point]])[0]
                straight_size_x = int(self.xy_size / px)
                straight_size_y = int(self.xy_size / py)
                warp_space_x = [
                    int(np.round(nx / 2)) - straight_size_x,
                    int(np.round(nx / 2)) + straight_size_x
                ]
                warp_space_y = [
                    int(np.round(ny / 2)) - straight_size_y,
                    int(np.round(ny / 2)) + straight_size_y
                ]
                if warp_space_x[0] < 0:
                    warp_space_x[1] += warp_space_x[0] - 2
                    warp_space_x[0] = 0
                if warp_space_y[0] < 0:
                    warp_space_y[1] += warp_space_y[0] - 2
                    warp_space_y[0] = 0

                spec = dict((
                    (0, warp_space_x),
                    (1, warp_space_y),
                    (2, (0, end_point_coord_native[2] -
                         start_point_coord_native[2])),
                ))
                spatial_crop(
                    Image("tmp.centerline_pad_native.nii.gz"),
                    spec).save("tmp.centerline_pad_crop_native.nii.gz")

                fname_ref = 'tmp.centerline_pad_crop_native.nii.gz'
                offset_z = 4
            else:
                fname_ref = 'tmp.centerline_pad_crop.nii.gz'

            nx, ny, nz, nt, px, py, pz, pt = image_centerline.dim
            padding_z = int(
                np.ceil(1.5 * ((length_centerline - size_z_centerline) / 2.0) /
                        pz)) + offset_z
            image_centerline_pad = pad_image(image_centerline,
                                             pad_z_i=padding_z,
                                             pad_z_f=padding_z)
            nx, ny, nz = image_centerline_pad.data.shape
            hdr_warp = image_centerline_pad.hdr.copy()
            hdr_warp.set_data_dtype('float32')
            start_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, start_point]])[0]
            end_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, end_point]])[0]

            straight_size_x = int(self.xy_size / px)
            straight_size_y = int(self.xy_size / py)
            warp_space_x = [
                int(np.round(nx / 2)) - straight_size_x,
                int(np.round(nx / 2)) + straight_size_x
            ]
            warp_space_y = [
                int(np.round(ny / 2)) - straight_size_y,
                int(np.round(ny / 2)) + straight_size_y
            ]

            if warp_space_x[0] < 0:
                warp_space_x[1] += warp_space_x[0] - 2
                warp_space_x[0] = 0
            if warp_space_x[1] >= nx:
                warp_space_x[1] = nx - 1
            if warp_space_y[0] < 0:
                warp_space_y[1] += warp_space_y[0] - 2
                warp_space_y[0] = 0
            if warp_space_y[1] >= ny:
                warp_space_y[1] = ny - 1

            spec = dict((
                (0, warp_space_x),
                (1, warp_space_y),
                (2, (0, end_point_coord[2] - start_point_coord[2] + offset_z)),
            ))
            image_centerline_straight = spatial_crop(image_centerline_pad,
                                                     spec)

            nx_s, ny_s, nz_s, nt_s, px_s, py_s, pz_s, pt_s = image_centerline_straight.dim
            hdr_warp_s = image_centerline_straight.hdr.copy()
            hdr_warp_s.set_data_dtype('float32')

            if self.template_orientation == 1:
                raise NotImplementedError()

            start_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, start_point]])[0]
            end_point_coord = image_centerline_pad.transfo_phys2pix(
                [[0, 0, end_point]])[0]

            number_of_voxel = nx * ny * nz
            logger.debug('Number of voxels: {}'.format(number_of_voxel))

            time_centerlines = time.time()

            coord_straight = np.empty((number_of_points, 3))
            coord_straight[..., 0] = int(np.round(nx_s / 2))
            coord_straight[..., 1] = int(np.round(ny_s / 2))
            coord_straight[..., 2] = np.linspace(
                0, end_point_coord[2] - start_point_coord[2], number_of_points)
            coord_phys_straight = image_centerline_straight.transfo_pix2phys(
                coord_straight)
            derivs_straight = np.empty((number_of_points, 3))
            derivs_straight[..., 0] = derivs_straight[..., 1] = 0
            derivs_straight[..., 2] = 1
            dx_straight, dy_straight, dz_straight = derivs_straight.T
            centerline_straight = Centerline(coord_phys_straight[:, 0],
                                             coord_phys_straight[:, 1],
                                             coord_phys_straight[:, 2],
                                             dx_straight, dy_straight,
                                             dz_straight)

            time_centerlines = time.time() - time_centerlines
            logger.info('Time to generate centerline: {} ms'.format(
                np.round(time_centerlines * 1000.0)))

        if verbose == 2:
            # TODO: use OO
            import matplotlib.pyplot as plt
            from datetime import datetime
            curved_points = centerline.progressive_length
            straight_points = centerline_straight.progressive_length
            range_points = np.linspace(0, 1, number_of_points)
            dist_curved = np.zeros(number_of_points)
            dist_straight = np.zeros(number_of_points)
            for i in range(1, number_of_points):
                dist_curved[i] = dist_curved[
                    i - 1] + curved_points[i - 1] / centerline.length
                dist_straight[i] = dist_straight[i - 1] + straight_points[
                    i - 1] / centerline_straight.length
            plt.plot(range_points, dist_curved)
            plt.plot(range_points, dist_straight)
            plt.grid(True)
            plt.savefig('fig_straighten_' +
                        datetime.now().strftime("%y%m%d%H%M%S%f") + '.png')
            plt.close()

        # alignment_mode = 'length'
        alignment_mode = 'levels'

        lookup_curved2straight = list(range(centerline.number_of_points))
        if self.discs_input_filename != "":
            # create look-up table curved to straight
            for index in range(centerline.number_of_points):
                disc_label = centerline.l_points[index]
                if alignment_mode == 'length':
                    relative_position = centerline.dist_points[index]
                else:
                    relative_position = centerline.dist_points_rel[index]
                idx_closest = centerline_straight.get_closest_to_absolute_position(
                    disc_label,
                    relative_position,
                    backup_index=index,
                    backup_centerline=centerline_straight,
                    mode=alignment_mode)
                if idx_closest is not None:
                    lookup_curved2straight[index] = idx_closest
                else:
                    lookup_curved2straight[index] = 0
        for p in range(0, len(lookup_curved2straight) // 2):
            if lookup_curved2straight[p] == lookup_curved2straight[p + 1]:
                lookup_curved2straight[p] = 0
            else:
                break
        for p in range(
                len(lookup_curved2straight) - 1,
                len(lookup_curved2straight) // 2, -1):
            if lookup_curved2straight[p] == lookup_curved2straight[p - 1]:
                lookup_curved2straight[p] = 0
            else:
                break
        lookup_curved2straight = np.array(lookup_curved2straight)

        lookup_straight2curved = list(
            range(centerline_straight.number_of_points))
        if self.discs_input_filename != "":
            for index in range(centerline_straight.number_of_points):
                disc_label = centerline_straight.l_points[index]
                if alignment_mode == 'length':
                    relative_position = centerline_straight.dist_points[index]
                else:
                    relative_position = centerline_straight.dist_points_rel[
                        index]
                idx_closest = centerline.get_closest_to_absolute_position(
                    disc_label,
                    relative_position,
                    backup_index=index,
                    backup_centerline=centerline_straight,
                    mode=alignment_mode)
                if idx_closest is not None:
                    lookup_straight2curved[index] = idx_closest
        for p in range(0, len(lookup_straight2curved) // 2):
            if lookup_straight2curved[p] == lookup_straight2curved[p + 1]:
                lookup_straight2curved[p] = 0
            else:
                break
        for p in range(
                len(lookup_straight2curved) - 1,
                len(lookup_straight2curved) // 2, -1):
            if lookup_straight2curved[p] == lookup_straight2curved[p - 1]:
                lookup_straight2curved[p] = 0
            else:
                break
        lookup_straight2curved = np.array(lookup_straight2curved)

        # Create volumes containing curved and straight warping fields
        data_warp_curved2straight = np.zeros((nx_s, ny_s, nz_s, 1, 3))
        data_warp_straight2curved = np.zeros((nx, ny, nz, 1, 3))

        # 5. compute transformations
        # Curved and straight images and the same dimensions, so we compute both warping fields at the same time.
        # b. determine which plane of spinal cord centreline it is included

        if self.curved2straight:
            for u in sct_progress_bar(range(nz_s)):
                x_s, y_s, z_s = np.mgrid[0:nx_s, 0:ny_s, u:u + 1]
                indexes_straight = np.array(
                    list(zip(x_s.ravel(), y_s.ravel(), z_s.ravel())))
                physical_coordinates_straight = image_centerline_straight.transfo_pix2phys(
                    indexes_straight)
                nearest_indexes_straight = centerline_straight.find_nearest_indexes(
                    physical_coordinates_straight)
                distances_straight = centerline_straight.get_distances_from_planes(
                    physical_coordinates_straight, nearest_indexes_straight)
                lookup = lookup_straight2curved[nearest_indexes_straight]
                indexes_out_distance_straight = np.logical_or(
                    np.logical_or(
                        distances_straight > self.threshold_distance,
                        distances_straight < -self.threshold_distance),
                    lookup == 0)
                projected_points_straight = centerline_straight.get_projected_coordinates_on_planes(
                    physical_coordinates_straight, nearest_indexes_straight)
                coord_in_planes_straight = centerline_straight.get_in_plans_coordinates(
                    projected_points_straight, nearest_indexes_straight)

                coord_straight2curved = centerline.get_inverse_plans_coordinates(
                    coord_in_planes_straight, lookup)
                displacements_straight = coord_straight2curved - physical_coordinates_straight
                # Invert Z coordinate as ITK & ANTs physical coordinate system is LPS- (RAI+)
                # while ours is LPI-
                # Refs: https://sourceforge.net/p/advants/discussion/840261/thread/2a1e9307/#fb5a
                #  https://www.slicer.org/wiki/Coordinate_systems
                displacements_straight[:, 2] = -displacements_straight[:, 2]
                displacements_straight[indexes_out_distance_straight] = [
                    100000.0, 100000.0, 100000.0
                ]

                data_warp_curved2straight[indexes_straight[:, 0], indexes_straight[:, 1], indexes_straight[:, 2], 0, :]\
                    = -displacements_straight

        if self.straight2curved:
            for u in sct_progress_bar(range(nz)):
                x, y, z = np.mgrid[0:nx, 0:ny, u:u + 1]
                indexes = np.array(list(zip(x.ravel(), y.ravel(), z.ravel())))
                physical_coordinates = image_centerline_pad.transfo_pix2phys(
                    indexes)
                nearest_indexes_curved = centerline.find_nearest_indexes(
                    physical_coordinates)
                distances_curved = centerline.get_distances_from_planes(
                    physical_coordinates, nearest_indexes_curved)
                lookup = lookup_curved2straight[nearest_indexes_curved]
                indexes_out_distance_curved = np.logical_or(
                    np.logical_or(distances_curved > self.threshold_distance,
                                  distances_curved < -self.threshold_distance),
                    lookup == 0)
                projected_points_curved = centerline.get_projected_coordinates_on_planes(
                    physical_coordinates, nearest_indexes_curved)
                coord_in_planes_curved = centerline.get_in_plans_coordinates(
                    projected_points_curved, nearest_indexes_curved)

                coord_curved2straight = centerline_straight.points[lookup]
                coord_curved2straight[:, 0:2] += coord_in_planes_curved[:, 0:2]
                coord_curved2straight[:, 2] += distances_curved

                displacements_curved = coord_curved2straight - physical_coordinates

                displacements_curved[:, 2] = -displacements_curved[:, 2]
                displacements_curved[indexes_out_distance_curved] = [
                    100000.0, 100000.0, 100000.0
                ]

                data_warp_straight2curved[indexes[:, 0], indexes[:, 1],
                                          indexes[:, 2],
                                          0, :] = -displacements_curved

        # Creation of the safe zone based on pre-calculated safe boundaries
        coord_bound_curved_inf, coord_bound_curved_sup = image_centerline_pad.transfo_phys2pix(
            [[0, 0, bound_curved[0]]]), image_centerline_pad.transfo_phys2pix(
                [[0, 0, bound_curved[1]]])
        coord_bound_straight_inf, coord_bound_straight_sup = image_centerline_straight.transfo_phys2pix(
            [[0, 0,
              bound_straight[0]]]), image_centerline_straight.transfo_phys2pix(
                  [[0, 0, bound_straight[1]]])

        if radius_safe > 0:
            data_warp_curved2straight[:, :, 0:coord_bound_straight_inf[0][2],
                                      0, :] = 100000.0
            data_warp_curved2straight[:, :, coord_bound_straight_sup[0][2]:,
                                      0, :] = 100000.0
            data_warp_straight2curved[:, :, 0:coord_bound_curved_inf[0][2],
                                      0, :] = 100000.0
            data_warp_straight2curved[:, :, coord_bound_curved_sup[0][2]:,
                                      0, :] = 100000.0

        # Generate warp files as a warping fields
        hdr_warp_s.set_intent('vector', (), '')
        hdr_warp_s.set_data_dtype('float32')
        hdr_warp.set_intent('vector', (), '')
        hdr_warp.set_data_dtype('float32')
        if self.curved2straight:
            img = Nifti1Image(data_warp_curved2straight, None, hdr_warp_s)
            save(img, 'tmp.curve2straight.nii.gz')
            logger.info('Warping field generated: tmp.curve2straight.nii.gz')

        if self.straight2curved:
            img = Nifti1Image(data_warp_straight2curved, None, hdr_warp)
            save(img, 'tmp.straight2curve.nii.gz')
            logger.info('Warping field generated: tmp.straight2curve.nii.gz')

        image_centerline_straight.save(fname_ref)
        if self.curved2straight:
            logger.info('Apply transformation to input image...')
            run_proc([
                'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i',
                'data.nii', '-o', 'tmp.anat_rigid_warp.nii.gz', '-t',
                'tmp.curve2straight.nii.gz', '-n', 'BSpline[3]'
            ],
                     is_sct_binary=True,
                     verbose=verbose)

        if self.accuracy_results:
            time_accuracy_results = time.time()
            # compute the error between the straightened centerline/segmentation and the central vertical line.
            # Ideally, the error should be zero.
            # Apply deformation to input image
            logger.info('Apply transformation to centerline image...')
            run_proc([
                'isct_antsApplyTransforms', '-d', '3', '-r', fname_ref, '-i',
                'centerline.nii.gz', '-o', 'tmp.centerline_straight.nii.gz',
                '-t', 'tmp.curve2straight.nii.gz', '-n', 'NearestNeighbor'
            ],
                     is_sct_binary=True,
                     verbose=verbose)
            file_centerline_straight = Image('tmp.centerline_straight.nii.gz',
                                             verbose=verbose)
            nx, ny, nz, nt, px, py, pz, pt = file_centerline_straight.dim
            coordinates_centerline = file_centerline_straight.getNonZeroCoordinates(
                sorting='z')
            mean_coord = []
            for z in range(coordinates_centerline[0].z,
                           coordinates_centerline[-1].z):
                temp_mean = [
                    coord.value for coord in coordinates_centerline
                    if coord.z == z
                ]
                if temp_mean:
                    mean_value = np.mean(temp_mean)
                    mean_coord.append(
                        np.mean([[
                            coord.x * coord.value / mean_value,
                            coord.y * coord.value / mean_value
                        ] for coord in coordinates_centerline if coord.z == z],
                                axis=0))

            # compute error between the straightened centerline and the straight line.
            x0 = file_centerline_straight.data.shape[0] / 2.0
            y0 = file_centerline_straight.data.shape[1] / 2.0
            count_mean = 0
            if number_of_points >= 10:
                mean_c = mean_coord[
                    2:
                    -2]  # we don't include the four extrema because there are usually messy.
            else:
                mean_c = mean_coord
            for coord_z in mean_c:
                if not np.isnan(np.sum(coord_z)):
                    dist = ((x0 - coord_z[0]) * px)**2 + (
                        (y0 - coord_z[1]) * py)**2
                    self.mse_straightening += dist
                    dist = np.sqrt(dist)
                    if dist > self.max_distance_straightening:
                        self.max_distance_straightening = dist
                    count_mean += 1
            self.mse_straightening = np.sqrt(self.mse_straightening /
                                             float(count_mean))

            self.elapsed_time_accuracy = time.time() - time_accuracy_results

        os.chdir(curdir)

        # Generate output file (in current folder)
        # TODO: do not uncompress the warping field, it is too time consuming!
        logger.info('Generate output files...')
        if self.curved2straight:
            generate_output_file(
                os.path.join(path_tmp, "tmp.curve2straight.nii.gz"),
                os.path.join(self.path_output, "warp_curve2straight.nii.gz"),
                verbose)
        if self.straight2curved:
            generate_output_file(
                os.path.join(path_tmp, "tmp.straight2curve.nii.gz"),
                os.path.join(self.path_output, "warp_straight2curve.nii.gz"),
                verbose)

        # create ref_straight.nii.gz file that can be used by other SCT functions that need a straight reference space
        if self.curved2straight:
            copy(os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                 os.path.join(self.path_output, "straight_ref.nii.gz"))
            # move straightened input file
            if fname_output == '':
                fname_straight = generate_output_file(
                    os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                    os.path.join(self.path_output,
                                 file_anat + "_straight" + ext_anat), verbose)
            else:
                fname_straight = generate_output_file(
                    os.path.join(path_tmp, "tmp.anat_rigid_warp.nii.gz"),
                    os.path.join(self.path_output, fname_output),
                    verbose)  # straightened anatomic

        # Remove temporary files
        if remove_temp_files:
            logger.info('Remove temporary files...')
            rmtree(path_tmp)

        if self.accuracy_results:
            logger.info('Maximum x-y error: {} mm'.format(
                self.max_distance_straightening))
            logger.info('Accuracy of straightening (MSE): {} mm'.format(
                self.mse_straightening))

        # display elapsed time
        self.elapsed_time = int(np.round(time.time() - start_time))

        return fname_straight
Exemplo n.º 21
0
    init_sct()
    parser = get_parser()
    arguments = parser.parse_args(args=None if sys.argv[1:] else ['--help'])

    fname_input1 = arguments.i
    fname_input2 = arguments.d

    verbose = arguments.v
    init_sct(log_level=verbose, update=True)  # Update log level

    tmp_dir = tmp_create()  # create tmp directory
    tmp_dir = os.path.abspath(tmp_dir)

    # copy input files to tmp directory
    # for fname in [fname_input1, fname_input2]:
    copy(fname_input1, tmp_dir)
    copy(fname_input2, tmp_dir)
    fname_input1 = ''.join(extract_fname(fname_input1)[1:])
    fname_input2 = ''.join(extract_fname(fname_input2)[1:])

    curdir = os.getcwd()
    os.chdir(tmp_dir)  # go to tmp directory

    if arguments.bin is not None:
        fname_input1_bin = add_suffix(fname_input1, '_bin')
        run_proc([
            'sct_maths', '-i', fname_input1, '-bin', '0', '-o',
            fname_input1_bin
        ])
        fname_input1 = fname_input1_bin
        fname_input2_bin = add_suffix(fname_input2, '_bin')
def pre_processing(fname_target,
                   fname_sc_seg,
                   fname_level=None,
                   fname_manual_gmseg=None,
                   new_res=0.3,
                   square_size_size_mm=22.5,
                   denoising=True,
                   verbose=1,
                   rm_tmp=True,
                   for_model=False):
    printv('\nPre-process data...', verbose, 'normal')

    tmp_dir = tmp_create()

    copy(fname_target, tmp_dir)
    fname_target = ''.join(extract_fname(fname_target)[1:])
    copy(fname_sc_seg, tmp_dir)
    fname_sc_seg = ''.join(extract_fname(fname_sc_seg)[1:])

    curdir = os.getcwd()
    os.chdir(tmp_dir)

    original_info = {
        'orientation': None,
        'im_sc_seg_rpi': None,
        'interpolated_images': []
    }

    im_target = Image(fname_target).copy()
    im_sc_seg = Image(fname_sc_seg).copy()

    # get original orientation
    printv('  Reorient...', verbose, 'normal')
    original_info['orientation'] = im_target.orientation

    # assert images are in the same orientation
    assert im_target.orientation == im_sc_seg.orientation, "ERROR: the image to segment and it's SC segmentation are not in the same orientation"

    im_target_rpi = im_target.copy().change_orientation(
        'RPI', generate_path=True).save()
    im_sc_seg_rpi = im_sc_seg.copy().change_orientation(
        'RPI', generate_path=True).save()
    original_info['im_sc_seg_rpi'] = im_sc_seg_rpi.copy(
    )  # target image in RPI will be used to post-process segmentations

    # denoise using P. Coupe non local means algorithm (see [Manjon et al. JMRI 2010]) implemented in dipy
    if denoising:
        printv('  Denoise...', verbose, 'normal')
        # crop image before denoising to fasten denoising
        nx, ny, nz, nt, px, py, pz, pt = im_target_rpi.dim
        size_x, size_y = (square_size_size_mm + 1) / px, (square_size_size_mm +
                                                          1) / py
        size = int(np.ceil(max(size_x, size_y)))
        # create mask
        fname_mask = 'mask_pre_crop.nii.gz'
        sct_create_mask.main([
            '-i', im_target_rpi.absolutepath, '-p',
            'centerline,' + im_sc_seg_rpi.absolutepath, '-f', 'box', '-size',
            str(size), '-o', fname_mask
        ])
        # crop image
        cropper = ImageCropper(im_target_rpi)
        cropper.get_bbox_from_mask(Image(fname_mask))
        im_target_rpi_crop = cropper.crop()
        # crop segmentation
        cropper = ImageCropper(im_sc_seg_rpi)
        cropper.get_bbox_from_mask(Image(fname_mask))
        im_sc_seg_rpi_crop = cropper.crop()
        # denoising
        from spinalcordtoolbox.math import denoise_nlmeans
        block_radius = 3
        block_radius = int(
            im_target_rpi_crop.data.shape[2] /
            2) if im_target_rpi_crop.data.shape[2] < (block_radius *
                                                      2) else block_radius
        patch_radius = block_radius - 1
        data_denoised = denoise_nlmeans(im_target_rpi_crop.data,
                                        block_radius=block_radius,
                                        patch_radius=patch_radius)
        im_target_rpi_crop.data = data_denoised

        im_target_rpi = im_target_rpi_crop
        im_sc_seg_rpi = im_sc_seg_rpi_crop
    else:
        fname_mask = None

    # interpolate image to reference square image (resample and square crop centered on SC)
    printv('  Interpolate data to the model space...', verbose, 'normal')
    list_im_slices = interpolate_im_to_ref(im_target_rpi,
                                           im_sc_seg_rpi,
                                           new_res=new_res,
                                           sq_size_size_mm=square_size_size_mm)
    original_info[
        'interpolated_images'] = list_im_slices  # list of images (not Slice() objects)

    printv('  Mask data using the spinal cord segmentation...', verbose,
           'normal')
    list_sc_seg_slices = interpolate_im_to_ref(
        im_sc_seg_rpi,
        im_sc_seg_rpi,
        new_res=new_res,
        sq_size_size_mm=square_size_size_mm,
        interpolation_mode=1)
    for i in range(len(list_im_slices)):
        # list_im_slices[i].data[list_sc_seg_slices[i].data == 0] = 0
        list_sc_seg_slices[i] = binarize(list_sc_seg_slices[i],
                                         thr_min=0.5,
                                         thr_max=1)
        list_im_slices[
            i].data = list_im_slices[i].data * list_sc_seg_slices[i].data

    printv('  Split along rostro-caudal direction...', verbose, 'normal')
    list_slices_target = [
        Slice(slice_id=i, im=im_slice.data, gm_seg=[], wm_seg=[])
        for i, im_slice in enumerate(list_im_slices)
    ]

    # load vertebral levels
    if fname_level is not None:
        printv('  Load vertebral levels...', verbose, 'normal')
        # copy level file to tmp dir
        os.chdir(curdir)
        copy(fname_level, tmp_dir)
        os.chdir(tmp_dir)
        # change fname level to only file name (path = tmp dir now)
        fname_level = ''.join(extract_fname(fname_level)[1:])
        # load levels
        list_slices_target = load_level(list_slices_target, fname_level)

    os.chdir(curdir)

    # load manual gmseg if there is one (model data)
    if fname_manual_gmseg is not None:
        printv('\n\tLoad manual GM segmentation(s) ...', verbose, 'normal')
        list_slices_target = load_manual_gmseg(list_slices_target,
                                               fname_manual_gmseg,
                                               tmp_dir,
                                               im_sc_seg_rpi,
                                               new_res,
                                               square_size_size_mm,
                                               for_model=for_model,
                                               fname_mask=fname_mask)

    if rm_tmp:
        # remove tmp folder
        rmtree(tmp_dir)
    return list_slices_target, original_info
        resample_to = 0.1

        if arguments.d is not None:
            input_second_fname = arguments.d
        if arguments.thinning is not None:
            param.thinning = bool(arguments.thinning)
        if arguments.resampling is not None:
            resample_to = arguments.resampling
        if arguments.o is not None:
            output_fname = arguments.o
        param.verbose = arguments.v
        init_sct(log_level=param.verbose, update=True)  # Update log level

        tmp_dir = tmp_create()
        im1_name = "im1.nii.gz"
        copy(input_fname, os.path.join(tmp_dir, im1_name))
        if input_second_fname != '':
            im2_name = 'im2.nii.gz'
            copy(input_second_fname, os.path.join(tmp_dir, im2_name))
        else:
            im2_name = None

        curdir = os.getcwd()
        os.chdir(tmp_dir)

        # now = time.time()
        input_im1 = Image(
            resample_image(im1_name,
                           binary=True,
                           thr=0.5,
                           npx=resample_to,
Exemplo n.º 24
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # initialize parameters
    param = Param()

    fname_data = arguments.i
    fname_bvecs = arguments.bvec
    average = arguments.a
    remove_temp_files = arguments.r
    path_out = arguments.ofolder

    fname_bvals = arguments.bval
    if arguments.bvalmin:
        param.bval_min = arguments.bvalmin

    # Initialization
    start_time = time.time()

    # printv(arguments)
    printv('\nInput parameters:', verbose)
    printv('  input file ............' + fname_data, verbose)
    printv('  bvecs file ............' + fname_bvecs, verbose)
    printv('  bvals file ............' + fname_bvals, verbose)
    printv('  average ...............' + str(average), verbose)

    # Get full path
    fname_data = os.path.abspath(fname_data)
    fname_bvecs = os.path.abspath(fname_bvecs)
    if fname_bvals:
        fname_bvals = os.path.abspath(fname_bvals)

    # Extract path, file and extension
    path_data, file_data, ext_data = extract_fname(fname_data)

    # create temporary folder
    path_tmp = tmp_create(basename="dmri_separate")

    # copy files into tmp folder and convert to nifti
    printv('\nCopy files into temporary folder...', verbose)
    ext = '.nii'
    dmri_name = 'dmri'
    b0_name = file_data + '_b0'
    b0_mean_name = b0_name + '_mean'
    dwi_name = file_data + '_dwi'
    dwi_mean_name = dwi_name + '_mean'

    if not convert(fname_data, os.path.join(path_tmp, dmri_name + ext)):
        printv('ERROR in convert.', 1, 'error')
    copy(fname_bvecs, os.path.join(path_tmp, "bvecs"), verbose=verbose)

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # Get size of data
    im_dmri = Image(dmri_name + ext)
    printv('\nGet dimensions data...', verbose)
    nx, ny, nz, nt, px, py, pz, pt = im_dmri.dim
    printv(
        '.. ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' + str(nt),
        verbose)

    # Identify b=0 and DWI images
    printv(fname_bvals)
    index_b0, index_dwi, nb_b0, nb_dwi = identify_b0(fname_bvecs, fname_bvals,
                                                     param.bval_min, verbose)

    # Split into T dimension
    printv('\nSplit along T dimension...', verbose)
    im_dmri_split_list = split_data(im_dmri, 3)
    for im_d in im_dmri_split_list:
        im_d.save()

    # Merge b=0 images
    printv('\nMerge b=0...', verbose)
    fname_in_list_b0 = []
    for it in range(nb_b0):
        fname_in_list_b0.append(dmri_name + '_T' + str(index_b0[it]).zfill(4) +
                                ext)
    im_in_list_b0 = [Image(fname) for fname in fname_in_list_b0]
    concat_data(im_in_list_b0, 3).save(b0_name + ext)

    # Average b=0 images
    if average:
        printv('\nAverage b=0...', verbose)
        img = Image(b0_name + ext)
        out = img.copy()
        dim_idx = 3
        if len(np.shape(img.data)) < dim_idx + 1:
            raise ValueError("Expecting image with 4 dimensions!")
        out.data = np.mean(out.data, dim_idx)
        out.save(path=b0_mean_name + ext)

    # Merge DWI
    fname_in_list_dwi = []
    for it in range(nb_dwi):
        fname_in_list_dwi.append(dmri_name + '_T' +
                                 str(index_dwi[it]).zfill(4) + ext)
    im_in_list_dwi = [Image(fname) for fname in fname_in_list_dwi]
    concat_data(im_in_list_dwi, 3).save(dwi_name + ext)

    # Average DWI images
    if average:
        printv('\nAverage DWI...', verbose)
        img = Image(dwi_name + ext)
        out = img.copy()
        dim_idx = 3
        if len(np.shape(img.data)) < dim_idx + 1:
            raise ValueError("Expecting image with 4 dimensions!")
        out.data = np.mean(out.data, dim_idx)
        out.save(path=dwi_mean_name + ext)

    # come back
    os.chdir(curdir)

    # Generate output files
    fname_b0 = os.path.abspath(os.path.join(path_out, b0_name + ext_data))
    fname_dwi = os.path.abspath(os.path.join(path_out, dwi_name + ext_data))
    fname_b0_mean = os.path.abspath(
        os.path.join(path_out, b0_mean_name + ext_data))
    fname_dwi_mean = os.path.abspath(
        os.path.join(path_out, dwi_mean_name + ext_data))
    printv('\nGenerate output files...', verbose)
    generate_output_file(os.path.join(path_tmp, b0_name + ext),
                         fname_b0,
                         verbose=verbose)
    generate_output_file(os.path.join(path_tmp, dwi_name + ext),
                         fname_dwi,
                         verbose=verbose)
    if average:
        generate_output_file(os.path.join(path_tmp, b0_mean_name + ext),
                             fname_b0_mean,
                             verbose=verbose)
        generate_output_file(os.path.join(path_tmp, dwi_mean_name + ext),
                             fname_dwi_mean,
                             verbose=verbose)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...', verbose)
        rmtree(path_tmp, verbose=verbose)

    # display elapsed time
    elapsed_time = time.time() - start_time
    printv(
        '\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) + 's',
        verbose)

    return fname_b0, fname_b0_mean, fname_dwi, fname_dwi_mean
Exemplo n.º 25
0
def register(param, file_src, file_dest, file_mat, file_out, im_mask=None):
    """
    Register two images by estimating slice-wise Tx and Ty transformations, which are regularized along Z. This function
    uses ANTs' isct_antsSliceRegularizedRegistration.

    :param param:
    :param file_src:
    :param file_dest:
    :param file_mat:
    :param file_out:
    :param im_mask: Image of mask, could be 2D or 3D
    :return:
    """

    # TODO: deal with mask

    # initialization
    failed_transfo = 0  # by default, failed matrix is 0 (i.e., no failure)
    do_registration = True

    # get metric radius (if MeanSquares, CC) or nb bins (if MI)
    if param.metric == 'MI':
        metric_radius = '16'
    else:
        metric_radius = '4'
    file_out_concat = file_out

    kw = dict()
    im_data = Image(
        file_src
    )  # TODO: pass argument to use antsReg instead of opening Image each time

    # register file_src to file_dest
    if param.todo == 'estimate' or param.todo == 'estimate_and_apply':
        # If orientation is sagittal, use antsRegistration in 2D mode
        # Note: the parameter --restrict-deformation is irrelevant with affine transfo

        if param.sampling == 'None':
            # 'None' sampling means 'fully dense' sampling
            # see https://github.com/ANTsX/ANTs/wiki/antsRegistration-reproducibility-issues
            sampling = param.sampling
        else:
            # param.sampling should be a float in [0,1], and means the
            # samplingPercentage that chooses a subset of points to
            # estimate from. We always use 'Regular' (evenly-spaced)
            # mode, though antsRegistration offers 'Random' as well.
            # Be aware: even 'Regular' is not fully deterministic:
            # > Regular includes a random perturbation on the grid sampling
            # - https://github.com/ANTsX/ANTs/issues/976#issuecomment-602313884
            sampling = 'Regular,' + param.sampling

        if im_data.orientation[2] in 'LR':
            cmd = [
                'isct_antsRegistration', '-d', '2', '--transform',
                'Affine[%s]' % param.gradStep, '--metric',
                param.metric + '[' + file_dest + ',' + file_src + ',1,' +
                metric_radius + ',' + sampling + ']', '--convergence',
                param.iter, '--shrink-factors', '1', '--smoothing-sigmas',
                param.smooth, '--verbose', '1', '--output',
                '[' + file_mat + ',' + file_out_concat + ']'
            ]
            cmd += get_interpolation('isct_antsRegistration', param.interp)
            if im_mask is not None:
                # if user specified a mask, make sure there are non-null voxels in the image before running the registration
                if np.count_nonzero(im_mask.data):
                    cmd += ['--masks', im_mask.absolutepath]
                else:
                    # Mask only contains zeros. Copying the image instead of estimating registration.
                    copy(file_src, file_out_concat, verbose=0)
                    do_registration = False
                    # TODO: create affine mat file with identity, in case used by -g 2
        # 3D mode
        else:
            cmd = [
                'isct_antsSliceRegularizedRegistration', '--polydegree',
                param.poly, '--transform',
                'Translation[%s]' % param.gradStep, '--metric',
                param.metric + '[' + file_dest + ',' + file_src + ',1,' +
                metric_radius + ',' + sampling + ']', '--iterations',
                param.iter, '--shrinkFactors', '1', '--smoothingSigmas',
                param.smooth, '--verbose', '1', '--output',
                '[' + file_mat + ',' + file_out_concat + ']'
            ]
            cmd += get_interpolation('isct_antsSliceRegularizedRegistration',
                                     param.interp)
            if im_mask is not None:
                cmd += ['--mask', im_mask.absolutepath]
        # run command
        if do_registration:
            kw.update(dict(is_sct_binary=True))
            # reducing the number of CPU used for moco (see issue #201 and #2642)
            env = {
                **os.environ,
                **{
                    "ITK_GLOBAL_DEFAULT_NUMBER_OF_THREADS": "1"
                }
            }
            status, output = run_proc(cmd,
                                      verbose=1 if param.verbose == 2 else 0,
                                      env=env,
                                      **kw)

    elif param.todo == 'apply':
        sct_apply_transfo.main(argv=[
            '-i', file_src, '-d', file_dest, '-w', file_mat + param.suffix_mat,
            '-o', file_out_concat, '-x', param.interp, '-v', '0'
        ])

    # check if output file exists
    # Note (from JCA): In the past, i've tried to catch non-zero output from ANTs function (via the 'status' variable),
    # but in some OSs, the function can fail while outputing zero. So as a pragmatic approach, I decided to go with
    # the "output file checking" approach, which is 100% sensitive.
    if not os.path.isfile(file_out_concat):
        # printv(output, verbose, 'error')
        printv(
            'WARNING in ' + os.path.basename(__file__) +
            ': No output. Maybe related to improper calculation of '
            'mutual information. Either the mask you provided is '
            'too small, or the subject moved a lot. If you see too '
            'many messages like this try with a bigger mask. '
            'Using previous transformation for this volume (if it'
            'exists).', param.verbose, 'warning')
        failed_transfo = 1

    # If sagittal, copy header (because ANTs screws it) and add singleton in 3rd dimension (for z-concatenation)
    if im_data.orientation[2] in 'LR' and do_registration:
        im_out = Image(file_out_concat)
        im_out.header = im_data.header
        im_out.data = np.expand_dims(im_out.data, 2)
        im_out.save(file_out, verbose=0)

    # return status of failure
    return failed_transfo
Exemplo n.º 26
0
def propseg(img_input, options_dict):
    """
    :param img_input: source image, to be segmented
    :param options_dict: arguments as dictionary
    :return: segmented Image
    """
    arguments = options_dict
    fname_input_data = img_input.absolutepath
    fname_data = os.path.abspath(fname_input_data)
    contrast_type = arguments.c
    contrast_type_conversion = {
        't1': 't1',
        't2': 't2',
        't2s': 't2',
        'dwi': 't1'
    }
    contrast_type_propseg = contrast_type_conversion[contrast_type]

    # Starting building the command
    cmd = ['isct_propseg', '-t', contrast_type_propseg]

    if arguments.o is not None:
        fname_out = arguments.o
    else:
        fname_out = os.path.basename(add_suffix(fname_data, "_seg"))

    folder_output = os.path.dirname(fname_out)
    cmd += ['-o', folder_output]
    if not os.path.isdir(folder_output) and os.path.exists(folder_output):
        logger.error("output directory %s is not a valid directory" %
                     folder_output)
    if not os.path.exists(folder_output):
        os.makedirs(folder_output)

    if arguments.down is not None:
        cmd += ["-down", str(arguments.down)]
    if arguments.up is not None:
        cmd += ["-up", str(arguments.up)]

    remove_temp_files = arguments.r

    verbose = int(arguments.v)
    # Update for propseg binary
    if verbose > 0:
        cmd += ["-verbose"]

    # Output options
    if arguments.mesh is not None:
        cmd += ["-mesh"]
    if arguments.centerline_binary is not None:
        cmd += ["-centerline-binary"]
    if arguments.CSF is not None:
        cmd += ["-CSF"]
    if arguments.centerline_coord is not None:
        cmd += ["-centerline-coord"]
    if arguments.cross is not None:
        cmd += ["-cross"]
    if arguments.init_tube is not None:
        cmd += ["-init-tube"]
    if arguments.low_resolution_mesh is not None:
        cmd += ["-low-resolution-mesh"]
    # TODO: Not present. Why is this here? Was this renamed?
    # if arguments.detect_nii is not None:
    #     cmd += ["-detect-nii"]
    # TODO: Not present. Why is this here? Was this renamed?
    # if arguments.detect_png is not None:
    #     cmd += ["-detect-png"]

    # Helping options
    use_viewer = None
    use_optic = True  # enabled by default
    init_option = None
    rescale_header = arguments.rescale
    if arguments.init is not None:
        init_option = float(arguments.init)
        if init_option < 0:
            printv(
                'Command-line usage error: ' + str(init_option) +
                " is not a valid value for '-init'", 1, 'error')
            sys.exit(1)
    if arguments.init_centerline is not None:
        if str(arguments.init_centerline) == "viewer":
            use_viewer = "centerline"
        elif str(arguments.init_centerline) == "hough":
            use_optic = False
        else:
            if rescale_header is not 1:
                fname_labels_viewer = func_rescale_header(str(
                    arguments.init_centerline),
                                                          rescale_header,
                                                          verbose=verbose)
            else:
                fname_labels_viewer = str(arguments.init_centerline)
            cmd += ["-init-centerline", fname_labels_viewer]
            use_optic = False
    if arguments.init_mask is not None:
        if str(arguments.init_mask) == "viewer":
            use_viewer = "mask"
        else:
            if rescale_header is not 1:
                fname_labels_viewer = func_rescale_header(
                    str(arguments.init_mask), rescale_header)
            else:
                fname_labels_viewer = str(arguments.init_mask)
            cmd += ["-init-mask", fname_labels_viewer]
            use_optic = False
    if arguments.mask_correction is not None:
        cmd += ["-mask-correction", str(arguments.mask_correction)]
    if arguments.radius is not None:
        cmd += ["-radius", str(arguments.radius)]
    # TODO: Not present. Why is this here? Was this renamed?
    # if arguments.detect_n is not None:
    #     cmd += ["-detect-n", str(arguments.detect_n)]
    # TODO: Not present. Why is this here? Was this renamed?
    # if arguments.detect_gap is not None:
    #     cmd += ["-detect-gap", str(arguments.detect_gap)]
    # TODO: Not present. Why is this here? Was this renamed?
    # if arguments.init_validation is not None:
    #     cmd += ["-init-validation"]
    if arguments.nbiter is not None:
        cmd += ["-nbiter", str(arguments.nbiter)]
    if arguments.max_area is not None:
        cmd += ["-max-area", str(arguments.max_area)]
    if arguments.max_deformation is not None:
        cmd += ["-max-deformation", str(arguments.max_deformation)]
    if arguments.min_contrast is not None:
        cmd += ["-min-contrast", str(arguments.min_contrast)]
    if arguments.d is not None:
        cmd += ["-d", str(arguments["-d"])]
    if arguments.distance_search is not None:
        cmd += ["-dsearch", str(arguments.distance_search)]
    if arguments.alpha is not None:
        cmd += ["-alpha", str(arguments.alpha)]

    # check if input image is in 3D. Otherwise itk image reader will cut the 4D image in 3D volumes and only take the first one.
    image_input = Image(fname_data)
    image_input_rpi = image_input.copy().change_orientation('RPI')
    nx, ny, nz, nt, px, py, pz, pt = image_input_rpi.dim
    if nt > 1:
        printv(
            'ERROR: your input image needs to be 3D in order to be segmented.',
            1, 'error')

    path_data, file_data, ext_data = extract_fname(fname_data)
    path_tmp = tmp_create(basename="label_vertebrae")

    # rescale header (see issue #1406)
    if rescale_header is not 1:
        fname_data_propseg = func_rescale_header(fname_data, rescale_header)
    else:
        fname_data_propseg = fname_data

    # add to command
    cmd += ['-i', fname_data_propseg]

    # if centerline or mask is asked using viewer
    if use_viewer:
        from spinalcordtoolbox.gui.base import AnatomicalParams
        from spinalcordtoolbox.gui.centerline import launch_centerline_dialog

        params = AnatomicalParams()
        if use_viewer == 'mask':
            params.num_points = 3
            params.interval_in_mm = 15  # superior-inferior interval between two consecutive labels
            params.starting_slice = 'midfovminusinterval'
        if use_viewer == 'centerline':
            # setting maximum number of points to a reasonable value
            params.num_points = 20
            params.interval_in_mm = 30
            params.starting_slice = 'top'
        im_data = Image(fname_data_propseg)

        im_mask_viewer = zeros_like(im_data)
        # im_mask_viewer.absolutepath = add_suffix(fname_data_propseg, '_labels_viewer')
        controller = launch_centerline_dialog(im_data, im_mask_viewer, params)
        fname_labels_viewer = add_suffix(fname_data_propseg, '_labels_viewer')

        if not controller.saved:
            printv(
                'The viewer has been closed before entering all manual points. Please try again.',
                1, 'error')
            sys.exit(1)
        # save labels
        controller.as_niftii(fname_labels_viewer)

        # add mask filename to parameters string
        if use_viewer == "centerline":
            cmd += ["-init-centerline", fname_labels_viewer]
        elif use_viewer == "mask":
            cmd += ["-init-mask", fname_labels_viewer]

    # If using OptiC
    elif use_optic:
        image_centerline = optic.detect_centerline(image_input, contrast_type,
                                                   verbose)
        fname_centerline_optic = os.path.join(path_tmp,
                                              'centerline_optic.nii.gz')
        image_centerline.save(fname_centerline_optic)
        cmd += ["-init-centerline", fname_centerline_optic]

    if init_option is not None:
        if init_option > 1:
            init_option /= (nz - 1)
        cmd += ['-init', str(init_option)]

    # enabling centerline extraction by default (needed by check_and_correct_segmentation() )
    cmd += ['-centerline-binary']

    # run propseg
    status, output = run_proc(cmd,
                              verbose,
                              raise_exception=False,
                              is_sct_binary=True)

    # check status is not 0
    if not status == 0:
        printv(
            'Automatic cord detection failed. Please initialize using -init-centerline or -init-mask (see help)',
            1, 'error')
        sys.exit(1)

    # build output filename
    fname_seg = os.path.join(folder_output, fname_out)
    fname_centerline = os.path.join(
        folder_output, os.path.basename(add_suffix(fname_data, "_centerline")))
    # in case header was rescaled, we need to update the output file names by removing the "_rescaled"
    if rescale_header is not 1:
        mv(
            os.path.join(
                folder_output,
                add_suffix(os.path.basename(fname_data_propseg), "_seg")),
            fname_seg)
        mv(
            os.path.join(
                folder_output,
                add_suffix(os.path.basename(fname_data_propseg),
                           "_centerline")), fname_centerline)
        # if user was used, copy the labelled points to the output folder (they will then be scaled back)
        if use_viewer:
            fname_labels_viewer_new = os.path.join(
                folder_output,
                os.path.basename(add_suffix(fname_data, "_labels_viewer")))
            copy(fname_labels_viewer, fname_labels_viewer_new)
            # update variable (used later)
            fname_labels_viewer = fname_labels_viewer_new

    # check consistency of segmentation
    if arguments.correct_seg:
        check_and_correct_segmentation(fname_seg,
                                       fname_centerline,
                                       folder_output=folder_output,
                                       threshold_distance=3.0,
                                       remove_temp_files=remove_temp_files,
                                       verbose=verbose)

    # copy header from input to segmentation to make sure qform is the same
    printv("Copy header input --> output(s) to make sure qform is the same.",
           verbose)
    list_fname = [fname_seg, fname_centerline]
    if use_viewer:
        list_fname.append(fname_labels_viewer)
    for fname in list_fname:
        im = Image(fname)
        im.header = image_input.header
        im.save(dtype='int8'
                )  # they are all binary masks hence fine to save as int8

    return Image(fname_seg)
Exemplo n.º 27
0
def spline(folder_mat, nt, nz, verbose, index_b0=[], graph=0):

    printv(
        '\n\n\n------------------------------------------------------------------------------',
        verbose)
    printv('Spline Regularization along T: Smoothing Patient Motion...',
           verbose)

    file_mat = [[[] for i in range(nz)] for i in range(nt)]
    for it in range(nt):
        for iz in range(nz):
            file_mat[it][iz] = os.path.join(
                folder_mat, "mat.T") + str(it) + '_Z' + str(iz) + '.txt'

    # Copying the existing Matrices to another folder
    old_mat = os.path.join(folder_mat, "old")
    try:
        os.makedirs(old_mat)
    except FileExistsError:
        pass

    # TODO
    for mat in glob.glob(os.path.join(folder_mat, '*.txt')):
        copy(mat, old_mat)

    printv('\nloading matrices...', verbose)
    X = [[[] for i in range(nt)] for i in range(nz)]
    Y = [[[] for i in range(nt)] for i in range(nz)]
    X_smooth = [[[] for i in range(nt)] for i in range(nz)]
    Y_smooth = [[[] for i in range(nt)] for i in range(nz)]
    for iz in range(nz):
        for it in range(nt):
            file = open(file_mat[it][iz])
            Matrix = np.loadtxt(file)
            file.close()

            X[iz][it] = Matrix[0, 3]
            Y[iz][it] = Matrix[1, 3]

    # Generate motion splines
    printv('\nGenerate motion splines...', verbose)
    T = np.arange(nt)
    if graph:
        import pylab as pl

    for iz in range(nz):

        spline = scipy.interpolate.UnivariateSpline(T,
                                                    X[iz][:],
                                                    w=None,
                                                    bbox=[None, None],
                                                    k=3,
                                                    s=None)
        X_smooth[iz][:] = spline(T)

        if graph:
            pl.plot(T, X_smooth[iz][:], label='spline_smoothing')
            pl.plot(T,
                    X[iz][:],
                    marker='*',
                    linestyle='None',
                    label='original_val')
            if len(index_b0) != 0:
                T_b0 = [T[i_b0] for i_b0 in index_b0]
                X_b0 = [X[iz][i_b0] for i_b0 in index_b0]
                pl.plot(T_b0,
                        X_b0,
                        marker='D',
                        linestyle='None',
                        color='k',
                        label='b=0')
            pl.title('X')
            pl.grid()
            pl.legend()
            pl.show()

        spline = scipy.interpolate.UnivariateSpline(T,
                                                    Y[iz][:],
                                                    w=None,
                                                    bbox=[None, None],
                                                    k=3,
                                                    s=None)
        Y_smooth[iz][:] = spline(T)

        if graph:
            pl.plot(T, Y_smooth[iz][:], label='spline_smoothing')
            pl.plot(T,
                    Y[iz][:],
                    marker='*',
                    linestyle='None',
                    label='original_val')
            if len(index_b0) != 0:
                T_b0 = [T[i_b0] for i_b0 in index_b0]
                Y_b0 = [Y[iz][i_b0] for i_b0 in index_b0]
                pl.plot(T_b0,
                        Y_b0,
                        marker='D',
                        linestyle='None',
                        color='k',
                        label='b=0')
            pl.title('Y')
            pl.grid()
            pl.legend()
            pl.show()

    # Storing the final Matrices
    printv('\nStoring the final Matrices...', verbose)
    for iz in range(nz):
        for it in range(nt):
            file = open(file_mat[it][iz])
            Matrix = np.loadtxt(file)
            file.close()

            Matrix[0, 3] = X_smooth[iz][it]
            Matrix[1, 3] = Y_smooth[iz][it]

            file = open(file_mat[it][iz], 'w')
            np.savetxt(file_mat[it][iz],
                       Matrix,
                       fmt="%s",
                       delimiter='  ',
                       newline='\n')
            file.close()

    printv('\n...Done. Patient motion has been smoothed', verbose)
    printv(
        '------------------------------------------------------------------------------\n',
        verbose)
Exemplo n.º 28
0
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv)
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    # Initialization
    param = Param()
    start_time = time.time()

    fname_anat = arguments.i
    fname_centerline = arguments.s
    param.algo_fitting = arguments.algo_fitting

    if arguments.smooth is not None:
        sigmas = arguments.smooth
    remove_temp_files = arguments.r
    if arguments.o is not None:
        fname_out = arguments.o
    else:
        fname_out = extract_fname(fname_anat)[1] + '_smooth.nii'

    # Display arguments
    printv('\nCheck input arguments...')
    printv('  Volume to smooth .................. ' + fname_anat)
    printv('  Centerline ........................ ' + fname_centerline)
    printv('  Sigma (mm) ........................ ' + str(sigmas))
    printv('  Verbose ........................... ' + str(verbose))

    # Check that input is 3D:
    nx, ny, nz, nt, px, py, pz, pt = Image(fname_anat).dim
    dim = 4  # by default, will be adjusted later
    if nt == 1:
        dim = 3
    if nz == 1:
        dim = 2
    if dim == 4:
        printv(
            'WARNING: the input image is 4D, please split your image to 3D before smoothing spinalcord using :\n'
            'sct_image -i ' + fname_anat + ' -split t -o ' + fname_anat,
            verbose, 'warning')
        printv('4D images not supported, aborting ...', verbose, 'error')

    # Extract path/file/extension
    path_anat, file_anat, ext_anat = extract_fname(fname_anat)
    path_centerline, file_centerline, ext_centerline = extract_fname(
        fname_centerline)

    path_tmp = tmp_create(basename="smooth_spinalcord")

    # Copying input data to tmp folder
    printv('\nCopying input data to tmp folder and convert to nii...', verbose)
    copy(fname_anat, os.path.join(path_tmp, "anat" + ext_anat))
    copy(fname_centerline, os.path.join(path_tmp,
                                        "centerline" + ext_centerline))

    # go to tmp folder
    curdir = os.getcwd()
    os.chdir(path_tmp)

    # convert to nii format
    im_anat = convert(Image('anat' + ext_anat))
    im_anat.save('anat.nii', mutable=True, verbose=verbose)
    im_centerline = convert(Image('centerline' + ext_centerline))
    im_centerline.save('centerline.nii', mutable=True, verbose=verbose)

    # Change orientation of the input image into RPI
    printv('\nOrient input volume to RPI orientation...')

    img_anat_rpi = Image("anat.nii").change_orientation("RPI")
    fname_anat_rpi = add_suffix(img_anat_rpi.absolutepath, "_rpi")
    img_anat_rpi.save(path=fname_anat_rpi, mutable=True)

    # Change orientation of the input image into RPI
    printv('\nOrient centerline to RPI orientation...')

    img_centerline_rpi = Image("centerline.nii").change_orientation("RPI")
    fname_centerline_rpi = add_suffix(img_centerline_rpi.absolutepath, "_rpi")
    img_centerline_rpi.save(path=fname_centerline_rpi, mutable=True)

    # Straighten the spinal cord
    # straighten segmentation
    printv('\nStraighten the spinal cord using centerline/segmentation...',
           verbose)
    cache_sig = cache_signature(
        input_files=[fname_anat_rpi, fname_centerline_rpi],
        input_params={"x": "spline"})
    cachefile = os.path.join(curdir, "straightening.cache")
    if cache_valid(cachefile, cache_sig) and os.path.isfile(
            os.path.join(
                curdir, 'warp_curve2straight.nii.gz')) and os.path.isfile(
                    os.path.join(
                        curdir,
                        'warp_straight2curve.nii.gz')) and os.path.isfile(
                            os.path.join(curdir, 'straight_ref.nii.gz')):
        # if they exist, copy them into current folder
        printv('Reusing existing warping field which seems to be valid',
               verbose, 'warning')
        copy(os.path.join(curdir, 'warp_curve2straight.nii.gz'),
             'warp_curve2straight.nii.gz')
        copy(os.path.join(curdir, 'warp_straight2curve.nii.gz'),
             'warp_straight2curve.nii.gz')
        copy(os.path.join(curdir, 'straight_ref.nii.gz'),
             'straight_ref.nii.gz')
        # apply straightening
        run_proc([
            'sct_apply_transfo', '-i', fname_anat_rpi, '-w',
            'warp_curve2straight.nii.gz', '-d', 'straight_ref.nii.gz', '-o',
            'anat_rpi_straight.nii', '-x', 'spline'
        ], verbose)
    else:
        run_proc([
            'sct_straighten_spinalcord', '-i', fname_anat_rpi, '-o',
            'anat_rpi_straight.nii', '-s', fname_centerline_rpi, '-x',
            'spline', '-param', 'algo_fitting=' + param.algo_fitting
        ], verbose)
        cache_save(cachefile, cache_sig)
        # move warping fields locally (to use caching next time)
        copy('warp_curve2straight.nii.gz',
             os.path.join(curdir, 'warp_curve2straight.nii.gz'))
        copy('warp_straight2curve.nii.gz',
             os.path.join(curdir, 'warp_straight2curve.nii.gz'))

    # Smooth the straightened image along z
    printv('\nSmooth the straightened image...')

    img = Image("anat_rpi_straight.nii")
    out = img.copy()

    if len(sigmas) == 1:
        sigmas = [sigmas[0] for i in range(len(img.data.shape))]
    elif len(sigmas) != len(img.data.shape):
        raise ValueError(
            "-smooth need the same number of inputs as the number of image dimension OR only one input"
        )

    sigmas = [sigmas[i] / img.dim[i + 4] for i in range(3)]
    out.data = smooth(out.data, sigmas)
    out.save(path="anat_rpi_straight_smooth.nii")

    # Apply the reversed warping field to get back the curved spinal cord
    printv(
        '\nApply the reversed warping field to get back the curved spinal cord...'
    )
    run_proc([
        'sct_apply_transfo', '-i', 'anat_rpi_straight_smooth.nii', '-o',
        'anat_rpi_straight_smooth_curved.nii', '-d', 'anat.nii', '-w',
        'warp_straight2curve.nii.gz', '-x', 'spline'
    ], verbose)

    # replace zeroed voxels by original image (issue #937)
    printv('\nReplace zeroed voxels by original image...', verbose)
    nii_smooth = Image('anat_rpi_straight_smooth_curved.nii')
    data_smooth = nii_smooth.data
    data_input = Image('anat.nii').data
    indzero = np.where(data_smooth == 0)
    data_smooth[indzero] = data_input[indzero]
    nii_smooth.data = data_smooth
    nii_smooth.save('anat_rpi_straight_smooth_curved_nonzero.nii')

    # come back
    os.chdir(curdir)

    # Generate output file
    printv('\nGenerate output file...')
    generate_output_file(
        os.path.join(path_tmp, "anat_rpi_straight_smooth_curved_nonzero.nii"),
        fname_out)

    # Remove temporary files
    if remove_temp_files == 1:
        printv('\nRemove temporary files...')
        rmtree(path_tmp)

    # Display elapsed time
    elapsed_time = time.time() - start_time
    printv('\nFinished! Elapsed time: ' + str(int(np.round(elapsed_time))) +
           's\n')

    display_viewer_syntax([fname_anat, fname_out], verbose=verbose)
def main(argv=None):
    parser = get_parser()
    arguments = parser.parse_args(argv if argv else ['--help'])
    verbose = arguments.v
    set_global_loglevel(verbose=verbose)

    fname_input1 = arguments.i
    fname_input2 = arguments.d

    tmp_dir = tmp_create()  # create tmp directory
    tmp_dir = os.path.abspath(tmp_dir)

    # copy input files to tmp directory
    # for fname in [fname_input1, fname_input2]:
    copy(fname_input1, tmp_dir)
    copy(fname_input2, tmp_dir)
    fname_input1 = ''.join(extract_fname(fname_input1)[1:])
    fname_input2 = ''.join(extract_fname(fname_input2)[1:])

    curdir = os.getcwd()
    os.chdir(tmp_dir)  # go to tmp directory

    if arguments.bin is not None:
        fname_input1_bin = add_suffix(fname_input1, '_bin')
        run_proc(['sct_maths', '-i', fname_input1, '-bin', '0', '-o', fname_input1_bin])
        fname_input1 = fname_input1_bin
        fname_input2_bin = add_suffix(fname_input2, '_bin')
        run_proc(['sct_maths', '-i', fname_input2, '-bin', '0', '-o', fname_input2_bin])
        fname_input2 = fname_input2_bin

    # copy header of im_1 to im_2
    from spinalcordtoolbox.image import Image
    im_1 = Image(fname_input1)
    im_2 = Image(fname_input2)
    im_2.header = im_1.header
    im_2.save()

    cmd = ['isct_dice_coefficient', fname_input1, fname_input2]

    if vars(arguments)["2d_slices"] is not None:
        cmd += ['-2d-slices', str(vars(arguments)["2d_slices"])]
    if arguments.b is not None:
        bounding_box = arguments.b
        cmd += ['-b'] + bounding_box
    if arguments.bmax is not None and arguments.bmax == 1:
        cmd += ['-bmax']
    if arguments.bzmax is not None and arguments.bzmax == 1:
        cmd += ['-bzmax']
    if arguments.o is not None:
        path_output, fname_output, ext = extract_fname(arguments.o)
        cmd += ['-o', fname_output + ext]

    rm_tmp = bool(arguments.r)

    # # Computation of Dice coefficient using Python implementation.
    # # commented for now as it does not cover all the feature of isct_dice_coefficient
    # #from spinalcordtoolbox.image import Image, compute_dice
    # #dice = compute_dice(Image(fname_input1), Image(fname_input2), mode='3d', zboundaries=False)
    # #printv('Dice (python-based) = ' + str(dice), verbose)

    status, output = run_proc(cmd, verbose, is_sct_binary=True)

    os.chdir(curdir)  # go back to original directory

    # copy output file into original directory
    if arguments.o is not None:
        copy(os.path.join(tmp_dir, fname_output + ext), os.path.join(path_output, fname_output + ext))

    # remove tmp_dir
    if rm_tmp:
        rmtree(tmp_dir)

    printv(output, verbose)
Exemplo n.º 30
0
    def apply(self):
        # Initialization
        fname_src = self.input_filename  # source image (moving)
        list_warp = self.list_warp  # list of warping fields
        fname_out = self.output_filename  # output
        fname_dest = self.fname_dest  # destination image (fix)
        verbose = self.verbose
        remove_temp_files = self.remove_temp_files
        crop_reference = self.crop  # if = 1, put 0 everywhere around warping field, if = 2, real crop

        islabel = False
        if self.interp == 'label':
            islabel = True
            self.interp = 'nn'

        interp = get_interpolation('isct_antsApplyTransforms', self.interp)

        # Parse list of warping fields
        printv('\nParse list of warping fields...', verbose)
        use_inverse = []
        fname_warp_list_invert = []
        # list_warp = list_warp.replace(' ', '')  # remove spaces
        # list_warp = list_warp.split(",")  # parse with comma
        for idx_warp, path_warp in enumerate(self.list_warp):
            # Check if this transformation should be inverted
            if path_warp in self.list_warpinv:
                use_inverse.append('-i')
                # list_warp[idx_warp] = path_warp[1:]  # remove '-'
                fname_warp_list_invert += [[
                    use_inverse[idx_warp], list_warp[idx_warp]
                ]]
            else:
                use_inverse.append('')
                fname_warp_list_invert += [[path_warp]]
            path_warp = list_warp[idx_warp]
            if path_warp.endswith((".nii", ".nii.gz")) \
                    and Image(list_warp[idx_warp]).header.get_intent()[0] != 'vector':
                raise ValueError(
                    "Displacement field in {} is invalid: should be encoded"
                    " in a 5D file with vector intent code"
                    " (see https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h"
                    .format(path_warp))
        # need to check if last warping field is an affine transfo
        isLastAffine = False
        path_fname, file_fname, ext_fname = extract_fname(
            fname_warp_list_invert[-1][-1])
        if ext_fname in ['.txt', '.mat']:
            isLastAffine = True

        # check if destination file is 3d
        # check_dim(fname_dest, dim_lst=[3]) # PR 2598: we decided to skip this line.

        # N.B. Here we take the inverse of the warp list, because sct_WarpImageMultiTransform concatenates in the reverse order
        fname_warp_list_invert.reverse()
        fname_warp_list_invert = functools.reduce(lambda x, y: x + y,
                                                  fname_warp_list_invert)

        # Extract path, file and extension
        path_src, file_src, ext_src = extract_fname(fname_src)
        path_dest, file_dest, ext_dest = extract_fname(fname_dest)

        # Get output folder and file name
        if fname_out == '':
            path_out = ''  # output in user's current directory
            file_out = file_src + '_reg'
            ext_out = ext_src
            fname_out = os.path.join(path_out, file_out + ext_out)

        # Get dimensions of data
        printv('\nGet dimensions of data...', verbose)
        img_src = Image(fname_src)
        nx, ny, nz, nt, px, py, pz, pt = img_src.dim
        # nx, ny, nz, nt, px, py, pz, pt = get_dimension(fname_src)
        printv(
            '  ' + str(nx) + ' x ' + str(ny) + ' x ' + str(nz) + ' x ' +
            str(nt), verbose)

        # if 3d
        if nt == 1:
            # Apply transformation
            printv('\nApply transformation...', verbose)
            if nz in [0, 1]:
                dim = '2'
            else:
                dim = '3'
            # if labels, dilate before resampling
            if islabel:
                printv("\nDilate labels before warping...")
                path_tmp = tmp_create(basename="apply_transfo")
                fname_dilated_labels = os.path.join(path_tmp,
                                                    "dilated_data.nii")
                # dilate points
                dilate(Image(fname_src), 4, 'ball').save(fname_dilated_labels)
                fname_src = fname_dilated_labels

            printv(
                "\nApply transformation and resample to destination space...",
                verbose)
            run_proc([
                'isct_antsApplyTransforms', '-d', dim, '-i', fname_src, '-o',
                fname_out, '-t'
            ] + fname_warp_list_invert + ['-r', fname_dest] + interp,
                     is_sct_binary=True)

        # if 4d, loop across the T dimension
        else:
            if islabel:
                raise NotImplementedError

            dim = '4'
            path_tmp = tmp_create(basename="apply_transfo")

            # convert to nifti into temp folder
            printv('\nCopying input data to tmp folder and convert to nii...',
                   verbose)
            img_src.save(os.path.join(path_tmp, "data.nii"))
            copy(fname_dest, os.path.join(path_tmp, file_dest + ext_dest))
            fname_warp_list_tmp = []
            for fname_warp in list_warp:
                path_warp, file_warp, ext_warp = extract_fname(fname_warp)
                copy(fname_warp, os.path.join(path_tmp, file_warp + ext_warp))
                fname_warp_list_tmp.append(file_warp + ext_warp)
            fname_warp_list_invert_tmp = fname_warp_list_tmp[::-1]

            curdir = os.getcwd()
            os.chdir(path_tmp)

            # split along T dimension
            printv('\nSplit along T dimension...', verbose)

            im_dat = Image('data.nii')
            im_header = im_dat.hdr
            data_split_list = sct_image.split_data(im_dat, 3)
            for im in data_split_list:
                im.save()

            # apply transfo
            printv('\nApply transformation to each 3D volume...', verbose)
            for it in range(nt):
                file_data_split = 'data_T' + str(it).zfill(4) + '.nii'
                file_data_split_reg = 'data_reg_T' + str(it).zfill(4) + '.nii'

                status, output = run_proc([
                    'isct_antsApplyTransforms',
                    '-d',
                    '3',
                    '-i',
                    file_data_split,
                    '-o',
                    file_data_split_reg,
                    '-t',
                ] + fname_warp_list_invert_tmp + [
                    '-r',
                    file_dest + ext_dest,
                ] + interp,
                                          verbose,
                                          is_sct_binary=True)

            # Merge files back
            printv('\nMerge file back...', verbose)
            import glob
            path_out, name_out, ext_out = extract_fname(fname_out)
            # im_list = [Image(file_name) for file_name in glob.glob('data_reg_T*.nii')]
            # concat_data use to take a list of image in input, now takes a list of file names to open the files one by one (see issue #715)
            fname_list = glob.glob('data_reg_T*.nii')
            fname_list.sort()
            im_list = [Image(fname) for fname in fname_list]
            im_out = sct_image.concat_data(im_list, 3, im_header['pixdim'])
            im_out.save(name_out + ext_out)

            os.chdir(curdir)
            generate_output_file(os.path.join(path_tmp, name_out + ext_out),
                                 fname_out)
            # Delete temporary folder if specified
            if remove_temp_files:
                printv('\nRemove temporary files...', verbose)
                rmtree(path_tmp, verbose=verbose)

        # Copy affine matrix from destination space to make sure qform/sform are the same
        printv(
            "Copy affine matrix from destination space to make sure qform/sform are the same.",
            verbose)
        im_src_reg = Image(fname_out)
        im_src_reg.copy_qform_from_ref(Image(fname_dest))
        im_src_reg.save(
            verbose=0
        )  # set verbose=0 to avoid warning message about rewriting file

        if islabel:
            printv(
                "\nTake the center of mass of each registered dilated labels..."
            )
            labeled_img = cubic_to_point(im_src_reg)
            labeled_img.save(path=fname_out)
            if remove_temp_files:
                printv('\nRemove temporary files...', verbose)
                rmtree(path_tmp, verbose=verbose)

        # Crop the resulting image using dimensions from the warping field
        warping_field = fname_warp_list_invert[-1]
        # If the last transformation is not an affine transfo, we need to compute the matrix space of the concatenated
        # warping field
        if not isLastAffine and crop_reference in [1, 2]:
            printv('Last transformation is not affine.')
            if crop_reference in [1, 2]:
                # Extract only the first ndim of the warping field
                img_warp = Image(warping_field)
                if dim == '2':
                    img_warp_ndim = Image(img_src.data[:, :], hdr=img_warp.hdr)
                elif dim in ['3', '4']:
                    img_warp_ndim = Image(img_src.data[:, :, :],
                                          hdr=img_warp.hdr)
                # Set zero to everything outside the warping field
                cropper = ImageCropper(Image(fname_out))
                cropper.get_bbox_from_ref(img_warp_ndim)
                if crop_reference == 1:
                    printv(
                        'Cropping strategy is: keep same matrix size, put 0 everywhere around warping field'
                    )
                    img_out = cropper.crop(background=0)
                elif crop_reference == 2:
                    printv(
                        'Cropping strategy is: crop around warping field (the size of warping field will '
                        'change)')
                    img_out = cropper.crop()
                img_out.save(fname_out)

        display_viewer_syntax([fname_dest, fname_out], verbose=verbose)