Exemplo n.º 1
0
def use_dtw(dataset_path):
    dataset=seq_dataset(path)
    test,train=split.person_dataset(dataset)
    y_pred=wrap(train,test)
    print(utils.data.find_errors(y_pred,test))
    seq.check_prediction(y_pred,test['y'])
Exemplo n.º 2
0
            y_i=y[i]
            mask_i=mask[i]

            loss_i=model.train(x_i,y_i,mask_i)
            cost.append(loss_i)
        sum_j=sum(cost)/float(len(cost))
        print(str(j) + ' ' + str(sum_j))
    return model

def check_prediction(y_pred,y_true):
    print(classification_report(y_true, y_pred))
    print(confusion_matrix(y_true,y_pred))

def get_batches(x,batch_size=6):
    n_batches=len(x)/batch_size
    if((len(x) % batch_size)!=0):
        n_batches+=1
    return [x[i*batch_size:(i+1)*batch_size] 
               for i in range(n_batches)]

if __name__ == "__main__":
    path='../dane5/seq/'
    nn_path='../dane5/lstm_'
    dataset=to_dataset.seq_dataset(path)

    new_dataset=to_dataset.masked_dataset(dataset)
    test,train=split.person_dataset(new_dataset)
    print(train.keys())
    model=make_model(train,False)
    model.get_model().save(nn_path)    
    check_model(model,test)