Exemplo n.º 1
0
def dataWrapper():

    dataSet = splitData(df = omitOutliers())
    trainSet = dataSet['trainSet']
    testSet = dataSet['testSet']

    trainSetX = trainSet.loc[:,'mcg':'nuc']
    trainSetClass = trainSet['Class']

    testSetX = testSet.loc[:,'mcg':'nuc']
    testSetClass = testSet['Class']

    return {'trainX':trainSetX, 'trainClass':trainSetClass,'testX':testSetX,'testClass':testSetClass}
Exemplo n.º 2
0
def setData():

    data = loadData()

    dataSet = splitData(data)
    trainSet = dataSet['trainSet']
    testSet = dataSet['testSet']

    xtrain = np.array(trainSet.loc[:,'mcg':'nuc'])
    ytrain = np.array(trainSet['Class'])
    ytrain = np.array(pd.get_dummies(ytrain))
    #print(ytrain)
    #print(len(ytrain[0]))

    xtest = np.array(testSet.loc[:,'mcg':'nuc'])
    ytest = np.array(testSet['Class'])
    ytest = np.array(pd.get_dummies(ytest))

    activation_1 = layers.Dense(units=3, activation='sigmoid') #First layer
    activation_2 = layers.Dense(units=3, activation='sigmoid') #Second layer
    output_layer = layers.Dense(units=10,activation='softmax') #Output layer

    #To build up the model
    model = Sequential([activation_1,activation_2,output_layer]) #initialized the model
    sgd = optimizers.SGD(lr=0.1)
    model.compile(loss='categorical_crossentropy',optimizer=sgd,metrics=['accuracy'])

    weight_receive= []
    print_weights = LambdaCallback(on_epoch_end=lambda batch, logs: ([weight_receive.append(output_layer.get_weights())]).append(activation_2.get_weights()))


    history = model.fit(xtrain, ytrain, epochs=50,batch_size=1,verbose=0,callbacks = [print_weights])

    error = []
    for i in range(len(history.history['acc'])):
        error.append(1-(history.history['acc'][i]))

    output_weight = output_layer.get_weights()
    layer2 = activation_2.get_weights()

    print('Training error:',error[len(error)-1])
    print('Outputlayer all weights:','\n',output_weight[0])
    print('Outputlayer bias:','\n',output_weight[1])
    print('Second Hidden layer all weights:','\n',layer2[0])
    print('Second Hidden layer bias:','\n',layer2[1])
Exemplo n.º 3
0
    plt.xlim(0,4)
    plt.ylim(0,10)
    outtemp = avrage_data(data,run_or_walk)
    xa, moving_avg, min_sigma, max_sigma = outtemp['frequency'], outtemp['avg'], outtemp['min sigma'], outtemp['max sigma']
    plt.fill_between(xa['frequency'],min_sigma,max_sigma,alpha=0.4)
    plt.plot(xa['frequency'],moving_avg,'r')



    #plt.plot(x['frequency'], x['magnitude'])


def median(lst): return np.median(np.array(lst))
def mean(lst): return sum(lst)/len(lst)



if __name__ == '__main__':
    data = splitData()
    plt.rc('text', usetex=True)
    plt.rc('font', family='serif')
    fig = plt.figure(figsize=(8,13), tight_layout=True)
    # ax = list()
    # ax.append()
    afrequesy_plot(data,'walk',(4,1,1))
    afrequesy_plot(data,'run',(4,1,2))
    movingmedian_plot(data,'walk',(4,1,3))
    movingmedian_plot(data,'run',(4,1,4))
    plt.subplots_adjust(hspace=0.53)
    plt.savefig('plot.png')
    plt.show()