Exemplo n.º 1
0
    def testAsLinearOperator(self):
        try:
            import scipy.sparse.linalg
            #Check it works for the eigenvalue solver
            L = GeneralLinearOperator.asLinearOperator(self.A)
            k = 10
            s, V = scipy.sparse.linalg.eigsh(L, k, which="LA")

            inds = numpy.flipud(numpy.argsort(s))
            s = s[inds]
            V = V[:, inds]

            B = self.A.toarray()
            s2, V2 = numpy.linalg.eigh(B)

            inds = numpy.flipud(numpy.argsort(s2))[0:k]
            s2 = s2[inds]
            V2 = V2[:, inds]

            nptst.assert_array_almost_equal(s, s2[0:s.shape[0]])

            nptst.assert_array_almost_equal((V * s).dot(V.T),
                                            (V2 * s2).dot(V2.T))
        except:
            print("Couldn't test asLinearOperator")
Exemplo n.º 2
0
def time_ns():
    density = 10**-3
    ns = var_range * 10**4
    times = numpy.zeros((5, ns.shape[0]))

    for i, n in enumerate(ns):
        # Generate random sparse matrix
        inds = numpy.random.randint(n, size=(2, n * n * density))
        data = numpy.random.rand(n * n * density)
        A = scipy.sparse.csc_matrix((data, inds), (n, n))
        A_sppy = sppy.csarray(A, storagetype="row")
        L = GeneralLinearOperator.asLinearOperator(A_sppy, parallel=True)
        print(A.shape, A.nnz)

        times[0, i] = time_reps(svds, (A, k), reps)
        times[1, i] = time_reps(svdp, (A, k), reps)
        # times[2, i] = time_reps(sparsesvd, (A, k), reps)
        times[3, i] = time_reps(truncated_svd.fit, (A,), reps)
        times[4, i] = time_reps(sppy.linalg.rsvd, (L, k, p, n_iter), reps)
        print(n, density, times[:, i])

    plt.figure(1)
    plt.plot(ns, times[0, :], 'k-', label="ARPACK")
    plt.plot(ns, times[1, :], 'r-', label="PROPACK")
    # plt.plot(ns, times[2, :], 'b-', label="SparseSVD")
    plt.plot(ns, times[3, :], 'k--', label="sklearn RSVD")
    plt.plot(ns, times[4, :], 'r--', label="sppy RSVD")
    plt.legend(loc="upper left")
    plt.xlabel("n")
    plt.ylabel("time (s)")
    plt.savefig("time_ns.png", format="png")
Exemplo n.º 3
0
def time_ns():
    density = 10**-3
    ns = var_range * 10**4
    times = numpy.zeros((5, ns.shape[0]))

    for i, n in enumerate(ns):
        # Generate random sparse matrix
        inds = numpy.random.randint(n, size=(2, n * n * density))
        data = numpy.random.rand(n * n * density)
        A = scipy.sparse.csc_matrix((data, inds), (n, n))
        A_sppy = sppy.csarray(A, storagetype="row")
        L = GeneralLinearOperator.asLinearOperator(A_sppy, parallel=True)
        print(A.shape, A.nnz)

        times[0, i] = time_reps(svds, (A, k), reps)
        times[1, i] = time_reps(svdp, (A, k), reps)
        # times[2, i] = time_reps(sparsesvd, (A, k), reps)
        times[3, i] = time_reps(truncated_svd.fit, (A, ), reps)
        times[4, i] = time_reps(sppy.linalg.rsvd, (L, k, p, n_iter), reps)
        print(n, density, times[:, i])

    plt.figure(1)
    plt.plot(ns, times[0, :], 'k-', label="ARPACK")
    plt.plot(ns, times[1, :], 'r-', label="PROPACK")
    # plt.plot(ns, times[2, :], 'b-', label="SparseSVD")
    plt.plot(ns, times[3, :], 'k--', label="sklearn RSVD")
    plt.plot(ns, times[4, :], 'r--', label="sppy RSVD")
    plt.legend(loc="upper left")
    plt.xlabel("n")
    plt.ylabel("time (s)")
    plt.savefig("time_ns.png", format="png")
Exemplo n.º 4
0
    def testAsLinearOperatorSum(self):

        n = 10
        m = 5
        density = 0.3
        A = rand((n, m), density)
        B = rand((n, m), density)

        L = GeneralLinearOperator.asLinearOperator(A)
        M = GeneralLinearOperator.asLinearOperator(B)

        N = GeneralLinearOperator.asLinearOperatorSum(L, M)

        k = 3
        V = numpy.random.rand(m, k)
        W = numpy.random.rand(n, k)

        U = N.matmat(V)
        U2 = A.dot(V) + B.dot(V)
        nptst.assert_array_almost_equal(U, U2)

        U = N.rmatmat(W)
        U2 = A.T.dot(W) + B.T.dot(W)
        nptst.assert_array_almost_equal(U, U2)

        v = numpy.random.rand(m)
        w = numpy.random.rand(n)

        u = N.matvec(v)
        u2 = A.dot(v) + B.dot(v)
        nptst.assert_array_almost_equal(u, u2)

        u = N.rmatvec(w)
        u2 = A.T.dot(w) + B.T.dot(w)
        nptst.assert_array_almost_equal(u, u2)

        #See if we get an error if A, B are different shapes
        B = rand((m, n), 0.1)
        M = GeneralLinearOperator.asLinearOperator(B)
        self.assertRaises(ValueError,
                          GeneralLinearOperator.asLinearOperatorSum, L, M)
Exemplo n.º 5
0
    def testAsLinearOperatorSum(self): 
        
        n = 10 
        m = 5 
        density = 0.3
        A = rand((n, m), density)    
        B = rand((n, m), density)
        
        L = GeneralLinearOperator.asLinearOperator(A)
        M = GeneralLinearOperator.asLinearOperator(B)

        N = GeneralLinearOperator.asLinearOperatorSum(L, M)
        
        k = 3
        V = numpy.random.rand(m, k)
        W = numpy.random.rand(n, k)
        
        U = N.matmat(V)
        U2 = A.dot(V) + B.dot(V)
        nptst.assert_array_almost_equal(U, U2)
       
        U = N.rmatmat(W)
        U2 = A.T.dot(W) + B.T.dot(W)
        nptst.assert_array_almost_equal(U, U2)     
        
        v = numpy.random.rand(m)
        w = numpy.random.rand(n)        
        
        u = N.matvec(v)
        u2 = A.dot(v) + B.dot(v)
        nptst.assert_array_almost_equal(u, u2)
        
        u = N.rmatvec(w)
        u2 = A.T.dot(w) + B.T.dot(w)
        nptst.assert_array_almost_equal(u, u2)
        
        #See if we get an error if A, B are different shapes 
        B = rand((m, n), 0.1)
        M = GeneralLinearOperator.asLinearOperator(B)
        self.assertRaises(ValueError, GeneralLinearOperator.asLinearOperatorSum, L, M)
    def profilePowerIteration2(self): 
                
        p = 100 
        q = 5
        omega = numpy.random.randn(self.X.shape[1], p)
        L = GeneralLinearOperator.asLinearOperator(self.X, parallel=True)
        
        def run(): 
            Y = L.matmat(omega)

            for i in range(q):
                Y = L.rmatmat(Y)
                Y = L.matmat(Y)
                
        ProfileUtils.profile('run()', globals(), locals())
Exemplo n.º 7
0
 def testAsLinearOperator(self): 
     try: 
         import scipy.sparse.linalg
         #Check it works for the eigenvalue solver 
         L = GeneralLinearOperator.asLinearOperator(self.A)
         k = 10 
         s, V = scipy.sparse.linalg.eigsh(L, k, which="LA")
         
         inds = numpy.flipud(numpy.argsort(s))
         s = s[inds]  
         V = V[:, inds]
         
         B = self.A.toarray()
         s2, V2 = numpy.linalg.eigh(B)
         
         inds = numpy.flipud(numpy.argsort(s2))[0:k]
         s2 = s2[inds]
         V2 = V2[:, inds]
         
         nptst.assert_array_almost_equal(s, s2[0:s.shape[0]])
         
         nptst.assert_array_almost_equal((V*s).dot(V.T), (V2*s2).dot(V2.T)) 
     except:
         print("Couldn't test asLinearOperator")