Exemplo n.º 1
0
plot = MatPlotLib()

# plot datasets
plot.datasets()

# plot marginal prior distributions
plot.priors()

# plot error model distribution treating each dataset point as prediction
# and a random realization of parameters from prior distribution
from datasets import datasets
from error import h
for name, dataset in datasets.items():
    dataset = dataset()
    xs = dataset['x'].copy(deep=1)
    for index in dataset.index:
        xs.loc[index] = h.inverse(xs.loc[index])
    dataset[r'$\xi$'] = xs
plot.errors(predictions=datasets)

# plot distributions for the initial model values
from initial import initial
plot.distributions(initial, suffix='-initial')

# report status
plot.status()

# generate report
from spux.report import generate
generate.report(authors=r'Jonas {\v S}ukys')
Exemplo n.º 2
0
# plot marginal posterior distributions
plot.posteriors()

# plot pairwise joint posterior distributions
plot.posteriors2d()

# plot pairwise joint posterior distribution for selected parameter pairs
plot.posterior2d(r'$\sigma_\xi$', r'$\sigma_y$')
plot.posterior2d(r'$\tau$', 'K')

# plot posterior model predictions including observations
labels = ['x', 'y', r'$\xi$', 'S', r'$\Delta V$']
plot.predictions(labels=labels)

# plot quantile-quantile comparison of the error and residual distributions
plot.QQ()

# compute Nash-Sutcliffe efficiency for the model
plot.NSE('y')

# show metrics
plot.metrics()

# report status
plot.status()

# generate report
from spux.report import generate
authors = r'Jonas {\v S}ukys'
generate.report(authors)