Exemplo n.º 1
0
def executor_derived(file_path_list: List[Path], output_path: Path, **kwargs) -> Dict:
    debug = kwargs.pop('debug', False),
    logger.remove()
    ts = file_path_list[0].name.rstrip('.a.csv')
    logger.add(
        sys.stdout, level='DEBUG',
        format=f"<yellow>{ts}</yellow> - {LOGURU_FORMAT}",
        backtrace=True
    )
    logger.info(f"running squeeze for {ts}")
    dfa = pd.read_csv(file_path_list[0].resolve(), engine='python', dtype='str', delimiter=r"\s*,\s*")
    dfa['real'] = dfa['real'].astype(float)
    dfa['predict'] = dfa['predict'].astype(float)
    dfb = pd.read_csv(file_path_list[1].resolve(), engine='python', dtype='str', delimiter=r"\s*,\s*")
    dfb['real'] = dfb['real'].astype(float)
    dfb['predict'] = dfb['predict'].astype(float)
    zero_index = (dfa.real == 0) & (dfa.predict == 0) & (dfb.real == 0) & (dfb.predict == 0)
    dfa = dfa[~zero_index]
    dfb = dfb[~zero_index]
    try:
        timestamp = int(ts)
    except ValueError:
        timestamp = ts
        logger.warning(f"Unresolved timestamp: {timestamp}")
    tic = time.time()

    divide = lambda x, y: np.divide(x, y, out=np.zeros_like(x), where=y != 0)
    model = Squeeze(
        data_list=[dfa, dfb],
        op=divide,
        option=SqueezeOption(
            debug=debug,
            fig_save_path=f"{output_path.resolve()}/{timestamp}" + "{suffix}" + ".pdf",
            enable_filter=True,
            **kwargs,
        )
    )
    model.run()
    logger.info("\n" + model.report)
    try:
        root_cause = AC.batch_to_string(
            frozenset(reduce(lambda x, y: x.union(y), model.root_cause, set())))  # type:
    except IndexError:
        root_cause = ""

    toc = time.time()
    elapsed_time = toc - tic
    return {
        'timestamp': timestamp,
        'elapsed_time': elapsed_time,
        'root_cause': root_cause,
    }
Exemplo n.º 2
0
def main(device=torch.device('cuda:0')):
    # CLI arguments
    parser = arg.ArgumentParser(
        description='We all know what we are doing. Fighting!')
    parser.add_argument("--datasize",
                        "-d",
                        default="small",
                        type=str,
                        help="data size you want to use, small, medium, total")
    # Parsing
    args = parser.parse_args()
    # Data loaders

    # TODO:
    ####### Enter the model selection here! #####
    modelSelection = input(
        'Please input the type of model to be used(res50,dense121,dense169,mob_v2,mob):'
    )

    datasize = args.datasize
    filename = "nyu_new.zip"
    pathname = f"data/{filename}"
    csv = "data/nyu_csv.zip"
    te_loader = getTestingData(datasize,
                               csv,
                               pathname,
                               batch_size=config(modelSelection +
                                                 ".batch_size"))

    # Model
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'mob_v2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    model = model.to(device)

    # define loss function
    # criterion = torch.nn.L1Loss()

    # Attempts to restore the latest checkpoint if exists
    print(f"Loading {mdoelSelection}...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))
    acc, loss = utils.evaluate_model(model, te_loader, device, test=True)
    # axes = util.make_training_plot()
    print(f'Test Error:{acc}')
    print(f'Test Loss:{loss}')
Exemplo n.º 3
0
def executor(file_path: Path, output_path: Path, **kwargs) -> Dict:
    debug = kwargs.pop('debug', False),
    logger.remove()
    logger.add(
        sys.stdout, level='DEBUG',
        format=f"<yellow>{file_path.name}</yellow> - {LOGURU_FORMAT}",
        backtrace=True
    )
    logger.info(f"running squeeze for {file_path}")
    df = pd.read_csv(file_path.resolve(), engine='python', dtype='str', delimiter=r"\s*,\s*")
    df['real'] = df['real'].astype(float)
    df['predict'] = df['predict'].astype(float)
    try:
        timestamp = int(file_path.name.rstrip('.csv'))
    except ValueError:
        timestamp = file_path.name.rstrip('.csv')
        logger.warning(f"Unresolved timestamp: {timestamp}")
    tic = time.time()

    model = Squeeze(
        data_list=[df],
        op=lambda x: x,
        option=SqueezeOption(
            debug=debug,
            fig_save_path=f"{output_path.resolve()}/{timestamp}" + "{suffix}" + ".pdf",
            **kwargs,
        )
    )
    model.run()
    logger.info("\n" + model.report)
    try:
        root_cause = AC.batch_to_string(
            frozenset(reduce(lambda x, y: x.union(y), model.root_cause, set())))  # type:
    except IndexError:
        root_cause = ""

    toc = time.time()
    elapsed_time = toc - tic
    return {
        'timestamp': timestamp,
        'elapsed_time': elapsed_time,
        'root_cause': root_cause,
    }
Exemplo n.º 4
0
def main():
    input = torch.randn(5, 3, 480, 640)
    print(input.size())
    # model = Net()
    # model = Dense169()
    # model = Dense121()
    # model = Res50()
    # model = Mob_v2()
    model = Squeeze()
    output = model(input)
    print(output.size())
Exemplo n.º 5
0
def main(device=torch.device('cuda:0')):
    # Model
    modelSelection = input(
        'Please input the type of model to be used(res50,dense121,dense169,dense161,mob_v2,mob):'
    )
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'dense161':
        model = Dense161()
    elif modelSelection.lower() == 'mob_v2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    model = model.to(device)

    # Attempts to restore the latest checkpoint if exists
    print("Loading unet...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))

    # Get Test Images
    img_list = glob("examples/" + "*.png")

    # Set model to eval mode
    model.eval()
    model = model.to(device)

    # Begin testing loop
    print("Begin Test Loop ...")

    for idx, img_name in enumerate(img_list):

        img = load_images([img_name])
        img = torch.Tensor(img).float().to(device)
        print("Processing {}, Tensor Shape: {}".format(img_name, img.shape))

        with torch.no_grad():
            preds = model(img).squeeze(0)

        output = colorize(preds.data)
        output = output.transpose((1, 2, 0))
        cv2.imwrite(
            img_name.split(".")[0] + "_" + modelSelection + "_result.png",
            output)

        print("Processing {} done.".format(img_name))
Exemplo n.º 6
0
def main(device, tr_loader, va_loader, te_loader, modelSelection):
    """Train CNN and show training plots."""
    # Model
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'dense161':
        model = Dense161()
    elif modelSelection.lower() == 'mobv2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    model = model.to(device)

    # TODO: define loss function, and optimizer
    learning_rate = utils.config(modelSelection + ".learning_rate")
    criterion = DepthLoss(0.1).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    number_of_epoches = 10
    #

    # Attempts to restore the latest checkpoint if exists
    print("Loading unet...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))

    running_va_loss = [] if 'va_loss' not in stats else stats['va_loss']
    running_va_acc = [] if 'va_err' not in stats else stats['va_err']
    running_tr_loss = [] if 'tr_loss' not in stats else stats['tr_loss']
    running_tr_acc = [] if 'tr_err' not in stats else stats['tr_err']
    tr_acc, tr_loss = utils.evaluate_model(model, tr_loader, device)
    acc, loss = utils.evaluate_model(model, va_loader, device)
    running_va_acc.append(acc)
    running_va_loss.append(loss)
    running_tr_acc.append(tr_acc)
    running_tr_loss.append(tr_loss)
    stats = {
        'va_err': running_va_acc,
        'va_loss': running_va_loss,
        'tr_err': running_tr_acc,
        'tr_loss': running_tr_loss,
    }
    # Loop over the entire dataset multiple times
    # for epoch in range(start_epoch, config('cnn.num_epochs')):
    epoch = start_epoch
    # while curr_patience < patience:
    while epoch < number_of_epoches:
        # Train model
        utils.train_epoch(device, tr_loader, model, criterion, optimizer)
        # Save checkpoint
        utils.save_checkpoint(model, epoch + 1,
                              utils.config(modelSelection + ".checkpoint"),
                              stats)
        # Evaluate model
        tr_acc, tr_loss = utils.evaluate_model(model, tr_loader, device)
        va_acc, va_loss = utils.evaluate_model(model, va_loader, device)
        running_va_acc.append(va_acc)
        running_va_loss.append(va_loss)
        running_tr_acc.append(tr_acc)
        running_tr_loss.append(tr_loss)
        epoch += 1
    print("Finished Training")
    utils.make_plot(running_tr_loss, running_tr_acc, running_va_loss,
                    running_va_acc)
Exemplo n.º 7
0
def main(device, tr_loader, va_loader, te_loader, modelSelection):
    """Train CNN and show training plots."""
    # CLI arguments
    # parser = arg.ArgumentParser(description='We all know what we are doing. Fighting!')
    # parser.add_argument("--datasize", "-d", default="small", type=str,
    #                     help="data size you want to use, small, medium, total")
    # Parsing
    # args = parser.parse_args()
    # Data loaders
    # datasize = args.datasize
    # Model
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'mobv2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    # Model
    # model = Net()
    # model = Squeeze()
    model = model.to(device)

    # TODO: define loss function, and optimizer
    learning_rate = utils.config(modelSelection + ".learning_rate")
    criterion = DepthLoss(0.1).to(device)
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    number_of_epoches = 10
    #

    # Attempts to restore the latest checkpoint if exists
    print("Loading unet...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))

    running_va_loss = [] if 'va_loss' not in stats else stats['va_loss']
    running_va_acc = [] if 'va_err' not in stats else stats['va_err']
    running_tr_loss = [] if 'tr_loss' not in stats else stats['tr_loss']
    running_tr_acc = [] if 'tr_err' not in stats else stats['tr_err']
    tr_acc, tr_loss = utils.evaluate_model(model, tr_loader, device)
    acc, loss = utils.evaluate_model(model, va_loader, device)
    running_va_acc.append(acc)
    running_va_loss.append(loss)
    running_tr_acc.append(tr_acc)
    running_tr_loss.append(tr_loss)
    stats = {
        'va_err': running_va_acc,
        'va_loss': running_va_loss,
        'tr_err': running_tr_acc,
        'tr_loss': running_tr_loss,
        # 'num_of_epoch': 0
    }
    # Loop over the entire dataset multiple times
    # for epoch in range(start_epoch, config('cnn.num_epochs')):
    epoch = start_epoch
    # while curr_patience < patience:
    while epoch < number_of_epoches:
        # Train model
        utils.train_epoch(device, tr_loader, model, criterion, optimizer)
        # Save checkpoint
        utils.save_checkpoint(model, epoch + 1,
                              utils.config(modelSelection + ".checkpoint"),
                              stats)
        # Evaluate model
        tr_acc, tr_loss = utils.evaluate_model(model, tr_loader, device)
        va_acc, va_loss = utils.evaluate_model(model, va_loader, device)
        running_va_acc.append(va_acc)
        running_va_loss.append(va_loss)
        running_tr_acc.append(tr_acc)
        running_tr_loss.append(tr_loss)
        epoch += 1
    print("Finished Training")
    utils.make_plot(running_tr_loss, running_tr_acc, running_va_loss,
                    running_va_acc)
Exemplo n.º 8
0
def main(device=torch.device('cuda:0')):
    # CLI arguments
    parser = arg.ArgumentParser(
        description='We all know what we are doing. Fighting!')
    parser.add_argument("--datasize",
                        "-d",
                        default="small",
                        type=str,
                        help="data size you want to use, small, medium, total")
    # Parsing
    args = parser.parse_args()
    # Data loaders
    datasize = args.datasize
    pathname = "data/nyu.zip"

    # Model
    modelSelection = input(
        'Please input the type of model to be used(res50,dense121,dense169,mob_v2,mob):'
    )

    # Model
    if modelSelection.lower() == 'res50':
        model = Res50()
    elif modelSelection.lower() == 'dense121':
        model = Dense121()
    elif modelSelection.lower() == 'mob_v2':
        model = Mob_v2()
    elif modelSelection.lower() == 'dense169':
        model = Dense169()
    elif modelSelection.lower() == 'mob':
        model = Net()
    elif modelSelection.lower() == 'squeeze':
        model = Squeeze()
    else:
        assert False, 'Wrong type of model selection string!'
    model = model.to(device)

    # Attempts to restore the latest checkpoint if exists
    print("Loading unet...")
    model, start_epoch, stats = utils.restore_checkpoint(
        model, utils.config(modelSelection + ".checkpoint"))

    # Get Test Images
    img_list = glob("examples/" + "*.png")

    # Set model to eval mode
    model.eval()
    model = model.to(device)

    # Begin testing loop
    print("Begin Test Loop ...")

    for idx, img_name in enumerate(img_list):

        img = load_images([img_name])
        img = torch.Tensor(img).float().to(device)
        print("Processing {}, Tensor Shape: {}".format(img_name, img.shape))

        with torch.no_grad():
            preds = model(img).squeeze(0)

        output = colorize(preds.data)
        output = output.transpose((1, 2, 0))
        cv2.imwrite(
            img_name.split(".")[0] + "_" + modelSelection + "_result.png",
            output)

        print("Processing {} done.".format(img_name))