Exemplo n.º 1
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)

        if exp.agent == 'TDadagrad':
            continue

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)

        dashed = use_ideal_h
        color = colors[exp.agent]

        # load the errors and hnorm files
        errors = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'ndh_summary.npy')

        # choose the best parameters from the _errors_
        best = getBestEnd(errors)

        best_ndh = find(results, best)

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        plotBest(best_ndh, ax, label=label, color=color, dashed=dashed)

    # plt.show()
    save(exp, f'norm_delta-hat')
    plt.clf()
Exemplo n.º 2
0
def generatePlotTTA(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)
        const, unconst = tee(results)

        color = colors[exp.agent]
        label = exp.agent

        if error == 'rmsve':
            rmspbe = loadResults(exp, 'rmspbe_summary.npy')
            rmspbe_unconst, rmspbe_const = tee(rmspbe)

            rmspbe_const = whereParameterGreaterEq(rmspbe_const, 'ratio', 1)

            best_rmspbe_unconst = getBest(rmspbe_unconst)
            best_rmspbe_const = getBest(rmspbe_const)

            best_unconst = find(unconst, best_rmspbe_unconst)
            best_const = find(const, best_rmspbe_const)

        elif error == 'rmspbe':
            const = whereParameterGreaterEq(const, 'ratio', 1)
            best_unconst = getBest(unconst)
            best_const = getBest(const)


        b = plotBest(best_unconst, ax, label=label + '_unc', color=color, dashed=True)
        bounds.append(b)

        b = plotBest(best_const, ax, label=label, color=color, dashed=False)
        bounds.append(b)
Exemplo n.º 3
0
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    ax.set_xscale("log", basex=2)
    for exp_path in exp_paths:
        if 'amsgrad' in exp_path:
            continue

        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent

        b = plotSensitivity(rmsve,
                            'ratio',
                            ax,
                            overStream=rmspbe,
                            color=color,
                            label=label,
                            bestBy=bestBy)
        bounds.append(b)
Exemplo n.º 4
0
def generatePlotSTA(ax, exp_paths, bestBy, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent

        if bestBy == 'end':
            metric = lambda m: np.mean(m[-int(m.shape[0] * .1):])
            best_rmspbe = getBestEnd(rmspbe)
            best = find(rmsve, best_rmspbe)
        elif bestBy == 'auc':
            metric = np.mean
            best_rmspbe = getBest(rmspbe)
            best = find(rmsve, best_rmspbe)

        m = metric(best.mean())
        ax.hlines(m, 2**-6, 2**6, color=color, label=label)

        bounds.append([m, m])
Exemplo n.º 5
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        rmsve = loadResults(exp, 'errors_summary.npy')
        rmspbe = loadResults(exp, 'rmspbe_summary.npy')

        # if exp.agent == 'TDadagrad':
        #     continue

        # best PBE using AUC
        best = getBest(rmspbe)
        best_rmsve = find(rmsve, best)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        plotBest(best_rmsve, ax, label=label, color=color, dashed=dashed)

    # plt.show()
    save(exp, f'rmsve_over_rmspbe', type='svg')
    plt.clf()
Exemplo n.º 6
0
def generatePlotTTA(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)
    const, unconst = tee(results)

    color = colors[exp.agent]
    label = exp.agent

    const = whereParameterGreaterEq(const, 'ratio', 1)
    if 'ReghTDC' in label:
        const = whereParameterEquals(const, 'reg_h', 0.8)

    best_const = getBest(const, bestBy=bestBy)
    best_unconst = getBest(unconst, bestBy=bestBy)

    if show_unconst and best_const != best_unconst:
        b = plotBest(best_unconst,
                     ax,
                     window=window,
                     smoothing=smoothing,
                     label=label + '_unc',
                     color=color,
                     alpha=0.2,
                     dashed=True)
        bounds.append(b)

    b = plotBest(best_const,
                 ax,
                 window=window,
                 smoothing=smoothing,
                 label=label,
                 color=color,
                 alpha=0.2,
                 dashed=False)
    bounds.append(b)
Exemplo n.º 7
0
def generatePlotTTA(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)
    const, unconst = tee(results)

    color = colors[exp.agent]
    label = rename(exp.agent)

    if 'ReghTDC' in exp.agent:
        const = whereParameterEquals(const, 'ratio', 1)
        const = whereParameterEquals(const, 'reg_h', 1)

    elif 'TDRCC' in exp.agent:
        const = whereParameterEquals(const, 'ratio', 1)
        # const = whereParameterEquals(const, 'reg_h', 0.8)
        const = whereParameterGreaterEq(const, 'reg_h', 0.01)

    elif 'TDC' in exp.agent:
        const = whereParameterGreaterEq(const, 'ratio', 1)

    if show_unconst:
        b = plotSensitivity(unconst, param, ax, stderr=stderr, color=color, label=label + '_unc', bestBy=bestBy, dashed=True)
        bounds.append(b)

    b = plotSensitivity(const, param, ax, stderr=stderr, color=color, label=label, bestBy=bestBy)
    bounds.append(b)
Exemplo n.º 8
0
def baseline(ax, exp_path, values, bounds):
    exp = loadExperiment(path)
    results = loadResults(exp, errorfile)

    if 'Regh' in exp.agent:
        results = whereParameterEquals(results, 'reg_h', 0.8)
        results = whereParameterEquals(results, 'ratio', 1)
    elif 'TDC' in exp.agent or 'GTD2' in exp.agent:
        results = whereParameterEquals(results, 'ratio', 1)

    if bestBy == 'end':
        metric = lambda m: np.mean(m[-int(m.shape[0] * .1):])
        best = getBestEnd(results)
    elif bestBy == 'auc':
        metric = np.mean
        best = getBest(results)

    color = colors[exp.agent]
    label = exp.agent

    m = metric(best.mean())
    low = min(values)
    high = max(values)
    ax.hlines(m, low, high, color=color, label=label, linewidth=4, linestyle=':')

    bounds.append((m, m))
Exemplo n.º 9
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        plot(results,
             ax,
             label=label,
             color=color,
             dashed=dashed,
             bestBy='end')

    # plt.show()
    save(exp, f'rmsve_learning-curve', type='svg')
    plt.clf()
Exemplo n.º 10
0
def generatePlot(exp_paths):
    ax = plt.gca()

    bounds = []
    i = -1
    for exp_path in exp_paths:
        i += 1
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'errors_summary.npy')

        param_dict = splitOverParameter(results, 'ratio')

        for key in param_dict:
            bound = plotSensitivity(param_dict[key],
                                    'alpha',
                                    ax,
                                    color=colors[i],
                                    bestBy='end')
            bounds.append(bound)

    lower = min(map(lambda x: x[0], bounds))
    upper = max(map(lambda x: x[1], bounds))

    ax.set_ylim([lower, upper])

    ax.set_xscale("log", basex=2)
    # plt.show()
    save(exp, f'alpha_over_beta_rmsve', type='svg')
    plt.clf()
Exemplo n.º 11
0
def generatePlot(exp_paths):
    b_fig = plt.figure("Mean Update Variance")
    w_fig = plt.figure("W Update Variance")
    h_fig = plt.figure("H Update Variance")
    b_ax = b_fig.add_subplot(1, 1, 1)
    w_ax = w_fig.add_subplot(1, 1, 1)
    h_ax = h_fig.add_subplot(1, 1, 1)

    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'variance_summary.npy')

        both, w, h = tee(results, 3)

        both = map(lambda r: r.reducer(columnReducer(0)), both)
        w = map(lambda r: r.reducer(columnReducer(1)), w)
        h = map(lambda r: r.reducer(columnReducer(2)), h)

        plot(both, b_ax)
        plot(w, w_ax)
        plot(h, h_ax)

    plt.show()
    exit()

    exp_name = exp.getExperimentName()
    save_path = f'experiments/{exp_name}'
    os.makedirs(save_path, exist_ok=True)
    b_fig.savefig(f'{save_path}/both_variance-curve.pdf')
    w_fig.savefig(f'{save_path}/w_variance-curve.pdf')
    h_fig.savefig(f'{save_path}/h_variance-curve.pdf')
Exemplo n.º 12
0
def generatePlot(exp_paths):
    ax = plt.gca()

    bounds = []
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)

        if exp.agent == 'TDadagrad':
            continue

        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')

        bound = plotSensitivity(results, 'h_variance', ax, label=label, color=color, bestBy='end')
        bounds.append(bound)

    # lower = min(map(lambda x: x[0], bounds))
    # upper = max(map(lambda x: x[1], bounds))

    # ax.set_ylim([lower, upper])

    ax.set_xscale("log", basex=2)
    plt.show()
    # save(exp, f'alpha-sensitivity')
    plt.clf()
Exemplo n.º 13
0
def generatePlot(exp_paths):
    ax = plt.gca()

    bounds = []
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)

        if exp.agent == 'TDadagrad':
            continue

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h
        color = colors[exp.agent]

        label = exp.agent.replace('adagrad', '')
        if use_ideal_h:
            label += '-h*'

        bound = plotSensitivity(results, 'h_variance', ax, label=label, color=color, dashed=dashed, bestBy='end')
        bounds.append(bound)

    lower = min(map(lambda x: x[0], bounds))
    upper = max(map(lambda x: x[1], bounds))

    ax.set_ylim([lower, upper])

    ax.set_xscale("log", basex=2)
    # plt.show()
    save(exp, f'h_variance-sensitivity')
    plt.clf()
Exemplo n.º 14
0
def generatePlotSSA(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        if 'amsgrad' in exp_path:
            continue

        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)
        stepsizes = loadResults(exp, 'stepsize_summary.npy')

        color = colors[exp.agent]
        label = exp.agent

        best_error = getBest(results)

        best = find(stepsizes, best_error)

        b = plotBest(best, ax, label=label, color=color, dashed=False)
        bounds.append(b)
Exemplo n.º 15
0
def generatePlotSSA(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)

    color = colors[exp.agent]
    label = exp.agent

    b = plot(results, ax, window=window, smoothing=smoothing, label=label, color=color, alpha=0.2, dashed=False, bestBy=bestBy)
    bounds.append(b)
Exemplo n.º 16
0
def generatePlot(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)

    color = colors[exp.agent]
    label = exp.agent

    b = plotSensitivity(results, param, ax, color=color, label=label, bestBy=bestBy)
    bounds.append(b)
Exemplo n.º 17
0
def generatePlotSSA(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        color = colors[exp.agent]
        label = exp.agent

        if error == 'rmsve':
            rmspbe = loadResults(exp, 'rmspbe_summary.npy')
            best_rmspbe = getBest(rmspbe)

            best = find(results, best_rmspbe)

        elif error == 'rmspbe':
            best = getBest(results)

        b = plotBest(best, ax, label=label, color=color, dashed=False)
        bounds.append(b)
Exemplo n.º 18
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, 'rmspbe_summary.npy')

        use_ideal_h = exp._d['metaParameters'].get('use_ideal_h', False)
        dashed = use_ideal_h

        label = exp.agent
        if use_ideal_h:
            label += '-h*'

        if use_ideal_h:
            continue

        if 'SmoothTDC' in exp.agent:
            agents = splitOverParameter(results, 'averageType')
            smooth_colors = {
                'ema': 'pink',
                'buffer': 'grey',
                'window': 'black',
            }
            plot(agents['ema'],
                 ax,
                 label=label + '_ema',
                 bestBy='auc',
                 color=smooth_colors['ema'],
                 dashed=dashed)
            # plot(agents['buffer'], ax, label=label + '_buffer', bestBy='auc', color=smooth_colors['buffer'], dashed=dashed)
            # plot(agents['window'], ax, label=label + '_window', bestBy='auc', color=smooth_colors['window'], dashed=dashed)

        else:
            color = colors[exp.agent]
            plot(results,
                 ax,
                 label=label,
                 bestBy='auc',
                 color=color,
                 dashed=dashed)

    plt.show()
    exit()
    # save(exp, f'rmspbe', type='png')
    problem = fileName(exp.getExperimentName())
    save_path = f'plots/'
    os.makedirs(save_path, exist_ok=True)

    fig = plt.gcf()
    fig.set_size_inches((13, 12), forward=False)
    plt.savefig(f'{save_path}/{problem}_rmspbe.png')
Exemplo n.º 19
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)

        # load the errors and hnorm files
        errors = loadResults(exp, 'errors_summary.npy')
        results = loadResults(exp, 'hnorm_summary.npy')

        # choose the best parameters from the _errors_
        best = getBestEnd(errors)

        best_hnorm = find(results, best)

        label = fileName(exp_path).replace('.json', '')

        plotBest(best_hnorm, ax, label=label)

    plt.show()
    # save(exp, f'learning-curve')
    plt.clf()
Exemplo n.º 20
0
def generatePlotTTA(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        if 'amsgrad' in exp_path:
            continue

        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)
        stepsizes = loadResults(exp, 'stepsize_summary.npy')
        results = whereParameterEquals(results, 'ratio', 1)

        color = colors[exp.agent]
        label = exp.agent

        best_error = getBest(results)
        best_stepsize = find(stepsizes, best_error)

        b = plotBest(best_stepsize,
                     ax,
                     label=[label + '_w', label + '_h'],
                     color=color,
                     dashed=[False, True])
        bounds.append(b)
Exemplo n.º 21
0
def generatePlot(exp_path):
    ax = plt.gca()
    # ax.semilogx()
    exp = loadExperiment(exp_path)

    # load the errors and hnorm files
    errors = loadResults(exp, 'errors_summary.npy')
    results = loadResults(exp, 'stepsize_summary.npy')

    # choose the best parameters from the _errors_
    best = getBestEnd(errors)

    best_ss = find(results, best)

    alg = exp.agent.replace('adagrad', '')

    plotBest(best_ss, ax, label=['w', 'h'])

    ax.set_ylim([0, 4])

    print(alg)
    # plt.show()
    save(exp, f'stepsizes-{alg}')
    plt.clf()
Exemplo n.º 22
0
def generatePlot(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, errorfile)
    results = addUpdateParam(results)

    color = colors[exp.agent]
    label = rename(exp.agent)

    b = plotSensitivity(results,
                        "updates",
                        ax,
                        color=color,
                        label=label,
                        bestBy=bestBy)
    bounds.append(b)
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        color = colors[exp.agent]
        label = exp.agent

        dashed = False
        if 'TDC' in label:
            dashed = True

        results = whereParameterGreaterEq(results, 'ratio', 1)

        b = plot(results, ax, label=label, color=color, dashed=dashed, bestBy=bestBy)
        bounds.append(b)
Exemplo n.º 24
0
def getResultsAndBest(exps):
    all_results = []
    best_result = None
    for exp in exps:
        results = loadResults(exp)
        results = whereParameterEquals(results, 'lambda', LAMBDA)

        best = getBest(results)
        all_results.append(best)

        if best_result is None:
            best_result = best
        elif np.mean(best.mean()) < np.mean(best_result.mean()):
            best_result = best

    return all_results, best_result
Exemplo n.º 25
0
def generatePlot(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        variance = loadResults(exp, 'expupd_summary.npy')

        agent = exp.agent
        color = colors[agent]
        label = agent

        best = getBest(variance)
        if 'GTD2' in agent or 'TDC' in agent:
            best.reducer(lambda m: m[:, 1])
        else:
            best.reducer(lambda m: m[:, 1])

        b = plotBest(best, ax, color=color, label=label)
        bounds.append(b)
Exemplo n.º 26
0
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    ax.set_xscale("log", basex=2)
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        agent = exp.agent
        color = colors[agent]
        label = agent

        b = plotSensitivity(results,
                            'reg_h',
                            ax,
                            reducer='best',
                            color=color,
                            label=label,
                            bestBy=bestBy)
        bounds.append(b)
Exemplo n.º 27
0
def generatePlot(ax, exp_path, bounds):
    exp = loadExperiment(exp_path)
    results = loadResults(exp, 'variance_summary.npy')

    best = getBest(results)
    best.reducer(lambda m: m[:, 0])

    color = colors[exp.agent]
    label = exp.agent

    b = plotBest(best,
                 ax,
                 window=window,
                 smoothing=smoothing,
                 label=label,
                 color=color,
                 dashed=False)
    bounds.append(b)
Exemplo n.º 28
0
def generatePlot(exp_paths):
    ax = plt.gca()
    # ax.semilogx()
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp)

        is_h_star = exp.getPermutation(0)['metaParameters']['use_ideal_h']
        agent = exp.agent.replace('adagrad', '')

        label = agent
        if is_h_star:
            label += '-h*'

        plot(results, ax, label=label)

    plt.show()
    # save(exp, f'learning-curve')
    plt.clf()
Exemplo n.º 29
0
def generatePlotTTA(ax, exp_paths, bestBy, bounds):
    ax.set_xscale("log", basex=2)
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        agent = exp.agent
        if 'SmoothTDC' in agent:
            average = exp._d['metaParameters']['averageType']
            agent += '_' + average

        color = colors[agent]
        label = agent

        b = plotSensitivity(results,
                            'buffer',
                            ax,
                            color=color,
                            label=label,
                            bestBy=bestBy)
        bounds.append(b)
def generatePlot(ax, exp_paths, bounds):
    for exp_path in exp_paths:
        exp = loadExperiment(exp_path)
        results = loadResults(exp, errorfile)

        color = colors[exp.agent]
        label = exp.agent

        results = whereParameterEquals(results, 'batch_size', 4)
        results = whereParameterLesserEq(results, 'ratio', 8)
        results = whereParameterLesserEq(results, 'alpha', 0.5)
        results = where(results, lambda r: r.params.get('ratio', 1) * r.params['alpha'] <= 1)

        if 'ReghTDC' in label:
            results = whereParameterEquals(results, 'reg_h', 1)
            results = whereParameterEquals(results, 'ratio', 1)

        elif 'TDRCC' in label:
            results = whereParameterEquals(results, 'reg_h', 0.8)
            results = whereParameterEquals(results, 'ratio', 1)

        elif 'TDC' in label:
            results = whereParameterGreaterEq(results, 'ratio', 1)

        left, right = tee(results)

        best_line = getBest(right).mean()
        best = np.mean(best_line)

        for result in left:
            # print(label, result.params)
            shade = 0.12
            line = result.mean()
            if np.mean(line) == best:
                shade = 1

            plotBest(result, ax, label=label, color=color, alphaMain=shade, dashed=False)

        bounds.append(best_line[0])