def test_mnist_untargeted(self):
        session = tf.Session()
        k.set_session(session)

        comp_params = {"loss": 'categorical_crossentropy',
                       "optimizer": 'adam',
                       "metrics": ['accuracy']}

        # Get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 10
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train = X_train[:nb_train], Y_train[:nb_train]
        X_test, Y_test = X_test[:nb_test], Y_test[:nb_test]
        im_shape = X_train[0].shape

        # Get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(X_train, Y_train, epochs=1, batch_size=batch_size, verbose=0)
        scores = classifier.evaluate(X_test, Y_test)
        print("\naccuracy on test set: %.2f%%" % (scores[1] * 100))

        # Perform attack
        df = SaliencyMapMethod(classifier, sess=session)
        df.set_params(clip_min=0, clip_max=1, theta=1)
        x_test_adv = df.generate(X_test)
        self.assertFalse((X_test == x_test_adv).all())

        y_pred = get_labels_np_array(classifier.predict(x_test_adv))
        self.assertFalse((Y_test == y_pred).all())

        scores = classifier.evaluate(x_test_adv, Y_test)
        print('\naccuracy on adversarial examples: %.2f%%' % (scores[1] * 100))
    def test_label_smooth(self):

        session = tf.Session()
        keras.backend.set_session(session)

        # get MNIST
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train, X_test, Y_test = X_train[:
                                                   NB_TRAIN], Y_train[:
                                                                      NB_TRAIN], X_test[:
                                                                                        NB_TEST], Y_test[:
                                                                                                         NB_TEST]
        im_shape = X_train[0].shape

        classifier = CNN(im_shape, act="relu", defences=["labsmooth"])
        classifier.compile({
            'loss': 'categorical_crossentropy',
            'optimizer': 'adam',
            'metrics': ['accuracy']
        })

        # Fit the classifier
        classifier.fit(X_train, Y_train, epochs=1, batch_size=BATCH_SIZE)
        scores = classifier.evaluate(X_test, Y_test)
        print("\naccuracy: %.2f%%" % (scores[1] * 100))
    def test_cnn_brelu(self):
        session = tf.Session()
        keras.backend.set_session(session)

        # get MNIST
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train, X_test, Y_test = X_train[:
                                                   NB_TRAIN], Y_train[:
                                                                      NB_TRAIN], X_test[:
                                                                                        NB_TEST], Y_test[:
                                                                                                         NB_TEST]
        im_shape = X_train[0].shape

        classifier = CNN(im_shape,
                         act="brelu",
                         act_params={
                             "alpha": 1,
                             "max_value": 2
                         })
        classifier.compile({
            'loss': 'categorical_crossentropy',
            'optimizer': 'adam',
            'metrics': ['accuracy']
        })

        # Fit the classifier
        classifier.fit(X_train, Y_train, epochs=1, batch_size=BATCH_SIZE)
        act_config = classifier.model.layers[1].get_config()
        self.assertEqual(act_config["alpha"], 1)
        self.assertEqual(act_config["max_value"], 2)
    def test_cnn_batchnorm(self):
        session = tf.Session()
        keras.backend.set_session(session)

        # get MNIST
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train, X_test, Y_test = X_train[:
                                                   NB_TRAIN], Y_train[:
                                                                      NB_TRAIN], X_test[:
                                                                                        NB_TEST], Y_test[:
                                                                                                         NB_TEST]
        im_shape = X_train[0].shape

        classifier = CNN(im_shape, act="relu", bnorm=True)
        classifier.compile({
            'loss': 'categorical_crossentropy',
            'optimizer': 'adam',
            'metrics': ['accuracy']
        })

        # Fit the classifier
        classifier.fit(X_train, Y_train, epochs=1, batch_size=BATCH_SIZE)
        bnorm_layer = classifier.model.layers[2]
        self.assertIsInstance(bnorm_layer,
                              keras.layers.normalization.BatchNormalization)
    def test_with_preprocessing(self):

        session = tf.Session()
        k.set_session(session)

        comp_params = {"loss": 'categorical_crossentropy',
                       "optimizer": 'adam',
                       "metrics": ['accuracy']}

        # get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 100
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train = X_train[:nb_train], Y_train[:nb_train]
        X_test, Y_test = X_test[:nb_test], Y_test[:nb_test]
        im_shape = X_train[0].shape

        # get classifier
        classifier = CNN(im_shape, act="relu", defences=["featsqueeze1"])
        classifier.compile(comp_params)
        classifier.fit(X_train, Y_train, epochs=1, batch_size=batch_size, verbose=0)
        scores = classifier.evaluate(X_train, Y_train)
        print("\naccuracy on training set: %.2f%%" % (scores[1] * 100))
        scores = classifier.evaluate(X_test, Y_test)
        print("\naccuracy on test set: %.2f%%" % (scores[1] * 100))

        attack_params = {"verbose": 0,
                         "clip_min": 0.,
                         "clip_max": 1.,
                         "eps": 1.}

        attack = FastGradientMethod(classifier, session)
        X_train_adv = attack.generate(X_train, **attack_params)
        X_test_adv = attack.generate(X_test, **attack_params)

        self.assertFalse((X_train == X_train_adv).all())
        self.assertFalse((X_test == X_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(X_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(X_test_adv))

        self.assertFalse((Y_train == train_y_pred).all())
        self.assertFalse((Y_test == test_y_pred).all())

        scores = classifier.evaluate(X_train_adv, Y_train)
        print('\naccuracy on adversarial train examples: %.2f%%' % (scores[1] * 100))

        scores = classifier.evaluate(X_test_adv, Y_test)
        print('\naccuracy on adversarial test examples: %.2f%%' % (scores[1] * 100))
Exemplo n.º 6
0
    def test_mnist(self):
        session = tf.Session()
        k.set_session(session)

        comp_params = {
            "loss": 'categorical_crossentropy',
            "optimizer": 'adam',
            "metrics": ['accuracy']
        }

        # get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 10
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train = X_train[:nb_train], Y_train[:nb_train]
        X_test, Y_test = X_test[:nb_test], Y_test[:nb_test]
        im_shape = X_train[0].shape

        # get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(X_train,
                       Y_train,
                       epochs=1,
                       batch_size=batch_size,
                       verbose=0)
        scores = classifier.evaluate(X_test, Y_test)
        print("\naccuracy on test set: %.2f%%" % (scores[1] * 100))

        df = CarliniL2Method(classifier,
                             sess=session,
                             targeted=False,
                             max_iterations=100,
                             binary_search_steps=2,
                             learning_rate=1e-2,
                             initial_const=1)
        params = {
            'y_val':
            random_targets(Y_test,
                           classifier.model.get_output_shape_at(-1)[-1])
        }
        x_test_adv = df.generate(X_test, **params)
        self.assertFalse((X_test == x_test_adv).all())

        y_pred = get_labels_np_array(classifier.predict(x_test_adv))
        self.assertFalse((Y_test == y_pred).all())

        scores = classifier.evaluate(x_test_adv, Y_test)
        print('\naccuracy on adversarial examples: %.2f%%' % (scores[1] * 100))
Exemplo n.º 7
0
    def test_emp_robustness_mnist(self):
        session = tf.Session()
        K.set_session(session)

        comp_params = {
            "loss": 'categorical_crossentropy',
            "optimizer": 'adam',
            "metrics": ['accuracy']
        }

        # get MNIST
        (X_train, Y_train), (_, _), _, _ = load_mnist()
        X_train, Y_train = X_train[:NB_TRAIN], Y_train[:NB_TRAIN]
        im_shape = X_train[0].shape

        # Get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(X_train, Y_train, epochs=1, batch_size=BATCH_SIZE)

        # Compute minimal perturbations
        params = {"eps_step": 1.1, "clip_min": 0., "clip_max": 1.}

        emp_robust = empirical_robustness(X_train, classifier, session, "fgsm",
                                          params)
        self.assertEqual(emp_robust, 0.)

        params = {
            "eps_step": 1.,
            "eps_max": 1.,
            "clip_min": None,
            "clip_max": None
        }
        emp_robust = empirical_robustness(X_train, classifier, session, "fgsm",
                                          params)
        self.assertAlmostEqual(emp_robust, 1., 3)

        params = {
            "eps_step": 0.1,
            "eps_max": 0.2,
            "clip_min": None,
            "clip_max": None
        }
        emp_robust = empirical_robustness(X_train, classifier, session, "fgsm",
                                          params)
        self.assertLessEqual(emp_robust, 0.2)
Exemplo n.º 8
0
    def test_mnist(self):
        session = tf.Session()
        k.set_session(session)

        comp_params = {
            "loss": 'categorical_crossentropy',
            "optimizer": 'adam',
            "metrics": ['accuracy']
        }

        # get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 11
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train = X_train[:nb_train], Y_train[:nb_train]
        X_test, Y_test = X_test[:nb_test], Y_test[:nb_test]
        im_shape = X_train[0].shape

        # get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(X_train,
                       Y_train,
                       epochs=1,
                       batch_size=batch_size,
                       verbose=0)

        # Attack
        nf = NewtonFool(classifier, sess=session)
        nf.set_params(max_iter=20)
        x_test_adv = nf.generate(X_test)
        self.assertFalse((X_test == x_test_adv).all())

        y_pred = classifier.predict(X_test)
        y_pred_adv = classifier.predict(x_test_adv)
        y_pred_bool = y_pred.max(axis=1, keepdims=1) == y_pred
        y_pred_max = y_pred.max(axis=1)
        y_pred_adv_max = y_pred_adv[y_pred_bool]
        self.assertTrue((y_pred_max >= y_pred_adv_max).all())

        scores1 = classifier.evaluate(X_test, Y_test)
        print("\nAccuracy on test set: %.2f%%" % (scores1[1] * 100))
        scores2 = classifier.evaluate(x_test_adv, Y_test)
        print('\nAccuracy on adversarial examples: %.2f%%' %
              (scores2[1] * 100))
        self.assertTrue(scores1[1] != scores2[1])
Exemplo n.º 9
0
    def test_mnist(self):
        session = tf.Session()
        k.set_session(session)

        comp_params = {"loss": 'categorical_crossentropy',
                       "optimizer": 'adam',
                       "metrics": ['accuracy']}

        # get MNIST
        batch_size, nb_train, nb_test = 10, 10, 10
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train = X_train[:nb_train], Y_train[:nb_train]
        X_test, Y_test = X_test[:nb_test], Y_test[:nb_test]
        im_shape = X_train[0].shape

        # get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(X_train, Y_train, epochs=1, batch_size=batch_size, verbose=0)
        scores = classifier.evaluate(X_test, Y_test)
        print("\naccuracy on test set: %.2f%%" % (scores[1] * 100))

        attack_params = {"verbose": 2,
                         "clip_min": 0.,
                         "clip_max": 1,
                         "attacker": "deepfool"}

        attack = UniversalPerturbation(classifier, session)
        x_train_adv = attack.generate(X_train, **attack_params)
        self.assertTrue((attack.fooling_rate >= 0.2) or not attack.converged)

        x_test_adv = X_test + attack.v
        self.assertFalse((X_test == x_test_adv).all())

        train_y_pred = get_labels_np_array(classifier.predict(x_train_adv))
        test_y_pred = get_labels_np_array(classifier.predict(x_test_adv))

        self.assertFalse((Y_test == test_y_pred).all())
        self.assertFalse((Y_train == train_y_pred).all())

        scores = classifier.evaluate(x_train_adv, Y_train)
        print('\naccuracy on adversarial train examples: %.2f%%' % (scores[1] * 100))

        scores = classifier.evaluate(x_test_adv, Y_test)
        print('\naccuracy on adversarial test examples: %.2f%%' % (scores[1] * 100))
    def test_save_load_cnn(self):
        NB_TRAIN = 100
        NB_TEST = 10

        comp_params = {
            'loss': 'categorical_crossentropy',
            'optimizer': 'adam',
            'metrics': ['accuracy']
        }

        session = tf.Session()
        keras.backend.set_session(session)

        # get MNIST
        (X_train, Y_train), (X_test, Y_test), _, _ = load_mnist()
        X_train, Y_train, X_test, Y_test = X_train[:
                                                   NB_TRAIN], Y_train[:
                                                                      NB_TRAIN], X_test[:
                                                                                        NB_TEST], Y_test[:
                                                                                                         NB_TEST]
        im_shape = X_train[0].shape

        classifier = CNN(im_shape, act="brelu")
        classifier.compile(comp_params)

        # Fit the classifier
        classifier.fit(X_train, Y_train, epochs=1, batch_size=BATCH_SIZE)
        path = "./tests/save/cnn/"
        # Test saving
        save_classifier(classifier, path)

        self.assertTrue(os.path.isfile(path + "model.json"))
        self.assertTrue(os.path.getsize(path + "model.json") > 0)
        self.assertTrue(os.path.isfile(path + "weights.h5"))
        self.assertTrue(os.path.getsize(path + "weights.h5") > 0)

        # Test loading
        loaded_classifier = load_classifier(path)
        scores = classifier.evaluate(X_test, Y_test)
        scores_loaded = loaded_classifier.evaluate(X_test, Y_test)
        self.assertAlmostEqual(scores, scores_loaded)
    def test_mnist_targeted(self):
        session = tf.Session()
        k.set_session(session)

        comp_params = {"loss": 'categorical_crossentropy',
                       "optimizer": 'adam',
                       "metrics": ['accuracy']}

        # Get MNIST
        batch_size, nb_train, nb_test = 100, 1000, 10
        (x_train, y_train), (x_test, y_test), _, _ = load_mnist()
        x_train, y_train = x_train[:nb_train], y_train[:nb_train]
        x_test, y_test = x_test[:nb_test], y_test[:nb_test]
        im_shape = x_train[0].shape

        # Get classifier
        classifier = CNN(im_shape, act="relu")
        classifier.compile(comp_params)
        classifier.fit(x_train, y_train, epochs=1, batch_size=batch_size, verbose=0)
        scores = classifier.evaluate(x_test, y_test)
        print("\naccuracy on test set: %.2f%%" % (scores[1] * 100))

        # Generate random target classes
        import numpy as np
        nb_classes = np.unique(np.argmax(y_test, axis=1)).shape[0]
        targets = np.random.randint(nb_classes, size=nb_test)
        while (targets == np.argmax(y_test, axis=1)).any():
            targets = np.random.randint(nb_classes, size=nb_test)

        # Perform attack
        df = SaliencyMapMethod(classifier, sess=session, clip_min=0, clip_max=1, theta=1)
        x_test_adv = df.generate(x_test, y_val=targets)
        self.assertFalse((x_test == x_test_adv).all())

        y_pred = get_labels_np_array(classifier.predict(x_test_adv))
        self.assertFalse((y_test == y_pred).all())

        scores = classifier.evaluate(x_test_adv, y_test)
        print('\naccuracy on adversarial examples: %.2f%%' % (scores[1] * 100))
Exemplo n.º 12
0
    # Remote monitor
    monitor = TensorBoard(log_dir=os.path.join(MODEL_PATH, 'logs'),
                          write_graph=False)
    callbacks_list = [checkpoint, monitor]
else:
    callbacks_list = []

callbacks_list.append(
    EarlyStopping(monitor='val_acc',
                  min_delta=0,
                  patience=5,
                  verbose=1,
                  mode='max'))

classifier.fit(X_train,
               Y_train,
               verbose=2 * int(args.verbose),
               validation_split=args.val_split,
               epochs=args.nb_epochs,
               batch_size=args.batch_size,
               callbacks=callbacks_list)

if args.save is not False:
    save_classifier(classifier, MODEL_PATH)

    # Load model with best validation score
    classifier = load_classifier(MODEL_PATH, "best-weights.h5")

scores = classifier.evaluate(X_test, Y_test, verbose=args.verbose)
v_print("\naccuracy: %.2f%%" % (scores[1] * 100))
# Get session
session = tf.Session()
k.set_session(session)

# Read MNIST dataset
(x_train, y_train), (x_test, y_test), min_, max_ = load_dataset('mnist')
im_shape = x_train[0].shape

# Construct and train a Resnet convolutional neural network
comp_params = {'loss': 'categorical_crossentropy',
               'optimizer': 'adam',
               'metrics': ['accuracy']}
source = ResNet(im_shape, act='relu')
source.compile(comp_params)
source.fit(x_train, y_train, validation_split=.1, epochs=5, batch_size=128)

# Craft adversarial samples with DeepFool
epsilon = .1  # Maximum perturbation
adv_crafter = DeepFool(source, sess=session)
x_train_adv = adv_crafter.generate(x_val=x_train, eps=epsilon, clip_min=min_, clip_max=max_)
x_test_adv = adv_crafter.generate(x_val=x_test, eps=epsilon, clip_min=min_, clip_max=max_)

# Construct and train a convolutional neural network
target = CNN(im_shape, act='relu', dataset='mnist')
target.compile(comp_params)
target.fit(x_train, y_train, validation_split=.1, epochs=5, batch_size=128)

# Evaluate the CNN on the adversarial samples
scores = target.evaluate(x_test, y_test)
print("\nLoss on adversarial samples: %.2f%%\nAccuracy on adversarial samples: %.2f%%" % (scores[0], scores[1] * 100))
Exemplo n.º 14
0
from src.utils import load_dataset

# Get session
session = tf.Session()
k.set_session(session)

# Read MNIST dataset
(x_train, y_train), (x_test, y_test), min_, max_ = load_dataset('mnist')
im_shape = x_train[0].shape

# Construct a convolutional neural network
comp_params = {'loss': 'categorical_crossentropy',
               'optimizer': 'adam',
               'metrics': ['accuracy']}
classifier = CNN(im_shape, act='relu', dataset='mnist')
classifier.compile(comp_params)
classifier.fit(x_train, y_train, validation_split=.1, epochs=5, batch_size=128)

# Evaluate the classifier on the test set
scores = classifier.evaluate(x_test, y_test)
print("\nTest loss: %.2f%%\nTest accuracy: %.2f%%" % (scores[0], scores[1] * 100))

# Craft adversarial samples with FGSM
epsilon = .1  # Maximum perturbation
adv_crafter = FastGradientMethod(classifier, sess=session)
x_test_adv = adv_crafter.generate(x_val=x_test, eps=epsilon, clip_min=min_, clip_max=max_)

# Evaluate the classifier on the adversarial examples
scores = classifier.evaluate(x_test_adv, y_test)
print("\nTest loss: %.2f%%\nTest accuracy: %.2f%%" % (scores[0], scores[1] * 100))