Exemplo n.º 1
0
class ResponseProvider:
    def __init__(self, is_response_from_console_enabled):
        self.db = DatabaseProxy(Configuration.DATABASE_ADDRESS.value, Configuration.DATABASE_NAME.value)
        self.chatbot_manager = src.main_chat.chatbot_manager.ChatbotManager(intro_chatbot='Bolek',
                                                                            university_chatbot='Lolek',
                                                                            database=self.db)
        self.is_response_from_console_enabled = is_response_from_console_enabled

    def get_response_from_console(self, input_statement):
        print("User question: ", input_statement)
        user_input = input("Your response >>>")
        self.db.add_new_doc_to_collection(Configuration.RESPONSES_COLLECTION.value, response=user_input)
        return user_input

    def response_source(self, input_statement):
        if not self.is_response_from_console_enabled:
            return self.chatbot_manager.ask_chatbot(input_statement)
        return self.get_response_from_console(input_statement)

    def receive_and_process(self):
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind((Configuration.BOT_ADDRESS.value, Configuration.ROBOT_SOCKET_PORT.value))
            s.listen()
            conn, addr = s.accept()
            with conn:
                while True:
                    data = conn.recv(1024).decode("utf-8")
                    if data:
                        print('received: ' + data)
                        result = self.response_source(data)
                        res = bytes(result, "utf-8")
                        conn.sendall(res)
 def __init__(self):
     self.utils = PolishLanguageUtils()
     self.database = DatabaseProxy(conf.DATABASE_ADDRESS.value,
                                   conf.DATABASE_NAME.value)
     self.stop_words = self.prepare_stopwords_list()
     self.nums_single_word_list = self.database.get_responses_list_by_tags(
         tag="numb_adpt_single_keyword")
     self.nums_compl_word_list = self.database.get_responses_list_by_tags(
         tag="numb_adpt_compl_keyword")
Exemplo n.º 3
0
 def __init__(self, **kwargs):
     self._intro_chatbot_name = kwargs.get(
         'intro_chatbot', 'Żwirek')  # our chatbots code names
     self._university_chatbot_name = kwargs.get('university_chatbot',
                                                'Muchomorek')
     self.db = DatabaseProxy(configuration.DATABASE_ADDRESS.value,
                             configuration.DATABASE_NAME.value)
     bot_context = BotContext()
     self._intro_chatbot = IntroBot(self._intro_chatbot_name, bot_context,
                                    self.db)
     self._university_chatbot = UniversityBot(self._university_chatbot_name,
                                              self.db)
     self._pop_quest_chatbot = PopularQuestionsBot('Jarek', self.db)
     self._is_intro_bot_unemployed = False
     self.response_continuation_handler = ResponseContinuationHandler(
         self.db)
Exemplo n.º 4
0
class Question(Resource):
    def __init__(self):
        self.db = DatabaseProxy(configuration.DATABASE_ADDRESS.value,
                                configuration.DATABASE_NAME.value)

    def get(self):
        result_collection = self.db.get_elements_of_capped_collection(
            configuration.QUESTION_COLLECTION_CAPPED.value, 'question')
        return jsonify({'current question': result_collection})
Exemplo n.º 5
0
class Responses(Resource):
    def __init__(self):
        self.db = DatabaseProxy(configuration.DATABASE_ADDRESS.value,
                                configuration.DATABASE_NAME.value)

    def get(self):
        docs = self.db.get_sorted_collection_elements(
            configuration.RESPONSES_COLLECTION.value, 'confidence')
        result = parse_documents(docs, ['confidence', 'response'])
        return jsonify({'suggested responses': result})
Exemplo n.º 6
0
def main():
    db = DatabaseProxy(conf.DATABASE_ADDRESS.value, conf.DATABASE_NAME.value)
    create_collections(db)
    initialize_polish_stopwords_collection(db, "./polish_stopwords.txt")
    csv_data.initialize_main_collection_from_scrapper(db)
    csv_data.insert_into_database('./csv_files/main_statements.csv', db)
    csv_data.insert_into_database(
        './csv_files/numbers_log_adapter_init_data.csv', db,
        conf.NUMBERS_QUEST_COLLECTION.value)
    csv_data.insert_into_database(
        './csv_files/popular_log_adapter_init_data.csv', db,
        conf.POPULAR_QUEST_COLLECTION.value)
Exemplo n.º 7
0
def main():
    # to be run once at first use of this functionality to initialize database

    chatbot_manager = ChatbotManager(intro_chatbot='Bolek',
                                     university_chatbot='Lolek',
                                     database=DatabaseProxy(
                                         conf.DATABASE_ADDRESS.value,
                                         conf.DATABASE_NAME.value))
    while True:
        user_input = input('>>>')
        res = chatbot_manager.ask_chatbot(user_input)
        print('Answer = ', res)
Exemplo n.º 8
0
class ChatbotManager:
    def __init__(self, **kwargs):
        self._intro_chatbot_name = kwargs.get(
            'intro_chatbot', 'Żwirek')  # our chatbots code names
        self._university_chatbot_name = kwargs.get('university_chatbot',
                                                   'Muchomorek')
        self.db = DatabaseProxy(configuration.DATABASE_ADDRESS.value,
                                configuration.DATABASE_NAME.value)
        bot_context = BotContext()
        self._intro_chatbot = IntroBot(self._intro_chatbot_name, bot_context,
                                       self.db)
        self._university_chatbot = UniversityBot(self._university_chatbot_name,
                                                 self.db)
        self._pop_quest_chatbot = PopularQuestionsBot('Jarek', self.db)
        self._is_intro_bot_unemployed = False
        self.response_continuation_handler = ResponseContinuationHandler(
            self.db)

    def _ask_intro_chatbot(self, processed_sentence):
        response = self._intro_chatbot.get_bot_response(processed_sentence)
        self._intro_chatbot.context_update(response.in_response_to)
        return response.text, response.confidence

    def _ask_university_chatbot(self, processed_sentence):
        response = self._university_chatbot.get_bot_response(
            processed_sentence)
        return response.text, response.confidence

    def _ask_pop_quest_chatbot(self, processed_sentence):
        response = self._pop_quest_chatbot.get_bot_response(processed_sentence)
        return response.text, response.confidence

    def _check_is_intro_chatbot_unemployed(self):
        if not self._is_intro_bot_unemployed:
            self._is_intro_bot_unemployed = self._intro_chatbot.check_is_bot_unemployed() \
                                            or self._university_chatbot.check_was_requested_in_row_above_thresh()
        return self._is_intro_bot_unemployed

    def ask_chatbot(
            self,
            user_input):  # this is key method which is called from main.py
        self.db.add_new_doc_to_collection(
            configuration.QUESTION_COLLECTION_CAPPED.value,
            question=user_input)
        response_from_handler = self.response_continuation_handler.return_next_part_of_response(
            user_input)

        if response_from_handler is not None:
            return response_from_handler
        self.db.clear_collection(configuration.RESPONSES_COLLECTION.value)
        popular_resp, pop_conf = self._ask_pop_quest_chatbot(user_input)
        if pop_conf >= configuration.POP_QUEST_BOT_CONST_CONF.value:
            return statement_utils.prepare_shortened_statement(
                popular_resp, 0, 1)

        if self._check_is_intro_chatbot_unemployed():
            chatbot_response, c1 = self._ask_university_chatbot(user_input)
            print('University chatbot = ', chatbot_response, ' conf = ', c1)
        else:
            (i_text, i_conf) = self._ask_intro_chatbot(user_input)
            (u_text, u_conf) = self._ask_university_chatbot(user_input)
            print("UniversityBot text = {}, u_conf = {}".format(
                u_text, u_conf))
            print("IntroBot text = {}, i_conf = {}".format(i_text, i_conf))
            conf_res = u_conf > i_conf
            self._university_chatbot.inc_responses_in_row() if conf_res \
                                                            else self._university_chatbot.reset_responses_in_row()
            chatbot_response = u_text if conf_res else i_text

        return statement_utils.prepare_shortened_statement(
            chatbot_response, 0, 1)
Exemplo n.º 9
0
 def __init__(self):
     self.db = DatabaseProxy(configuration.DATABASE_ADDRESS.value,
                             configuration.DATABASE_NAME.value)
class SentenceFilter:
    def __init__(self):
        self.utils = PolishLanguageUtils()
        self.database = DatabaseProxy(conf.DATABASE_ADDRESS.value,
                                      conf.DATABASE_NAME.value)
        self.stop_words = self.prepare_stopwords_list()
        self.nums_single_word_list = self.database.get_responses_list_by_tags(
            tag="numb_adpt_single_keyword")
        self.nums_compl_word_list = self.database.get_responses_list_by_tags(
            tag="numb_adpt_compl_keyword")

    @staticmethod
    def filter_word_form(word_form, morphologic_tag):
        return len(morphologic_tag.intersection(
            word_class_name.get(word_form))) > 0

    @staticmethod
    def delete_additional_info_after_colon(word, separator=':'):
        index = word.find(separator)
        if index == -1:
            return word
        return word[:index]

    @staticmethod
    def is_empty_list(arg_list):
        return len(arg_list) == 0

    @staticmethod
    def list_to_str_with_colons(list, separator=':'):
        string = ''
        if list is None:
            return ""
        for elem in list:
            string += elem + separator
        string = string[:-1]
        return string

    def is_name(self, name):
        if conf.NAME.value in self.utils.interpret_word(name.capitalize()):
            return True
        return False

    def is_complex_lem_in_stop_words(self, complex_lemmas, separator=':'):
        splitted_lemmas = complex_lemmas.split(separator)
        for lemma in splitted_lemmas:
            if lemma in self.stop_words:
                return True
        return False

    def prepare_stopwords_list(self):
        result_list = []
        result = self.database.get_docs_from_collection(
            'polish_stop_words', {"text": {
                '$exists': True
            }})
        for r in result:
            result_list.append(r["text"])
        return result_list

    def extract_lemma_and_morphological_tag(self, word):
        morphological_tag = None
        morphological_tag_set = None
        lemma = None
        analysis_result = self.utils.morfeusz.analyse(word)
        for element in analysis_result:
            try:
                morphological_tag = element[2][2]
                if 'interp' == morphological_tag:
                    continue
                lemma = element[2][1]
            except IndexError:
                print(
                    'No word class available after analysis in: ``extract_lemma_and_morphologic_tag``'
                )
            morphological_tag_set = set(morphological_tag.split(':'))
        return lemma, morphological_tag_set

    def extract_lemma(self, word, is_response_cont=False):
        lemmas = []
        analysis_result = self.utils.morfeusz.analyse(word)
        if len(analysis_result) == 0:
            return None
        for element in analysis_result:
            try:
                morphological_tag = element[2][2]
                if 'interp' == morphological_tag:
                    continue
                if not is_response_cont and SentenceFilter.filter_word_form(
                        'verb', set(morphological_tag.split(':'))):
                    lemmas.clear()
                    break
                lemma = element[2][1]
                lemma = SentenceFilter.delete_additional_info_after_colon(
                    lemma)
                if lemma not in lemmas:
                    lemmas.append(lemma)
            except IndexError:
                return None
        return lemmas if not is_response_cont else lemmas if len(
            lemmas) != 0 else ""

    def filter_stop_words(self, word):
        return word[0] not in self.stop_words

    def filter_sentence(self, sentence, forms_to_filter):
        sentence_filtered = None
        words = list(
            filter(lambda y: y.lower() not in self.stop_words,
                   sentence.split(' ')))
        sentence_after_extraction = list(
            map(lambda z: self.extract_lemma_and_morphological_tag(z), words))
        for form in forms_to_filter:
            sentence_filtered = list(
                filter(
                    lambda x_y: SentenceFilter.filter_word_form(form, x_y[1]),
                    # python3 does not support tuple unpacking, that's why
                    sentence_after_extraction))
        return list(map(lambda x: x[0].lower(), sentence_filtered))

    def filter_sentence_complex(self, sentence):
        words = list(
            filter(lambda y: y.lower() not in self.stop_words,
                   sentence.split(' ')))
        sentence_after_extraction = list(
            map(lambda z: self.extract_lemma(z), words))
        sentence_after_extraction = list(
            filter(lambda x_list: not SentenceFilter.is_empty_list(x_list),
                   sentence_after_extraction))
        sent_filt_to_col_lemmas = list(
            map(lambda x_list: SentenceFilter.list_to_str_with_colons(x_list),
                sentence_after_extraction))
        sentence_filtered = list(
            map(lambda y: y.lower(), sent_filt_to_col_lemmas))
        sentence_filtered = list(
            filter(lambda y: not self.is_complex_lem_in_stop_words(y),
                   sentence_filtered))
        return sentence_filtered

    def extract_lemmas_and_filter_stopwords(self, sentence):
        words = list(
            filter(lambda y: y.lower() not in self.stop_words,
                   sentence.split(' ')))
        lemmas = []
        for word in words:
            try:
                lemmas.append(self.extract_lemma(word)[0].lower())
            except IndexError:
                return []
        return list(filter(lambda x: x is not None, lemmas))

    def is_sentence_about_numbers(self, sentence):
        splitted_sen = sentence.lower().split(' ')
        was_word_in_complex_list = False
        for word in splitted_sen:
            if word in self.nums_single_word_list: return True
            elif word in self.nums_compl_word_list and was_word_in_complex_list:
                return True
            elif word in self.nums_compl_word_list:
                was_word_in_complex_list = True
        return False

    def extract_complex_lemmas_and_filter_stopwords(self, phrase):
        analysis = self.utils.morfeusz.analyse(phrase)
        tags = set([])
        old_word_index = 0
        single_tag = set([])
        for interpretation in analysis:
            new_word_index = interpretation[0]
            if 'interp' == interpretation[2][2]:
                continue
            if new_word_index != old_word_index:
                if len(single_tag) > 0:
                    single_tags_list = list(single_tag)
                    single_tags_list.sort()
                    tags.add(
                        SentenceFilter.list_to_str_with_colons(
                            single_tags_list))
                old_word_index = new_word_index
                single_tag = set([])
            word_form = SentenceFilter.delete_additional_info_after_colon(
                interpretation[2][1])
            if not self.is_stopword(word_form):
                single_tag.add(word_form.lower())
        if len(single_tag) > 0:
            single_tags_list = list(single_tag)
            single_tags_list.sort()
            tags.add(SentenceFilter.list_to_str_with_colons(single_tags_list))
        return tags

    def is_stopword(self, word):
        return word.lower() in self.stop_words

    def split_to_single_and_complex_lemmas(self, lemmas_list):
        normal_lemmas = []
        complex_lemmas = []
        for lemma in lemmas_list:
            if ':' in lemma:
                complex_lemmas.append(lemma)
            else:
                normal_lemmas.append(lemma)
        return normal_lemmas, complex_lemmas

    def generate_single_lemmas_list(self, complex_lemmas_list):
        single_lemmas_list = []
        for complex_lemma in complex_lemmas_list:
            words = complex_lemma.split(':')
            for word in words:
                single_lemmas_list.append(word)
        return single_lemmas_list
Exemplo n.º 11
0
from configuration import Configuration
from src.common_utils.database.database_service import DatabaseProxy


def extract_keys(document, keys):
    return [document[key] for key in keys]


def parse_documents(documents, keys):
    result = []
    for document in documents:
        result.append(dict([(key, document[key]) for key in keys]))
    return result


database = DatabaseProxy('mongodb://localhost:27017/', 'PepperChatDB')
docs = database.get_sorted_collection_elements(Configuration.RESPONSES_COLLECTION.value, 'confidence')
res = parse_documents(docs, ['confidence', 'response'])
Exemplo n.º 12
0
 def __init__(self, is_response_from_console_enabled):
     self.db = DatabaseProxy(Configuration.DATABASE_ADDRESS.value, Configuration.DATABASE_NAME.value)
     self.chatbot_manager = src.main_chat.chatbot_manager.ChatbotManager(intro_chatbot='Bolek',
                                                                         university_chatbot='Lolek',
                                                                         database=self.db)
     self.is_response_from_console_enabled = is_response_from_console_enabled