def insert_fund_type(nav_fund_type_df, nav_date):
    print('insert_fund_type for nav_date: {nav_date}')
    dc = DbConfig()
    con = dc.get_engine()
    new_fund_type_df = nav_fund_type_df.drop_duplicates()

    existing_fund_type_df = existing_fund_type()
    if not existing_fund_type_df.empty:
        existing_fund_types = existing_fund_type_df['fund_type_name'].values
        new_fund_type_df = new_fund_type_df.loc[
            ~new_fund_type_df['fund_type_name'].isin(existing_fund_types)]

    if not new_fund_type_df.empty:
        no_of_rows = new_fund_type_df.shape[0]
        print(
            f'{no_of_rows} new fund_type to be added for nav_date: {nav_date}',
        )
        new_fund_type_df['added_on'] = get_np_array(no_of_rows, nav_date,
                                                    'object')
        new_fund_type_df.to_sql('fund_type',
                                con=con,
                                if_exists='append',
                                chunksize=1000,
                                index=False)
        print(
            f'{no_of_rows} new fund type added in fund_type table for nav_date: {nav_date}...'
        )
def insert_company_info(nav_company_names_df, nav_date):
    print(f'insert_company_info for nav_date: {nav_date}')

    new_company_names_df = nav_company_names_df[['company_name'
                                                 ]].drop_duplicates()

    existing_company_names_df = existing_company_info()
    if not existing_company_names_df.empty:
        existing_company_names = existing_company_names_df[
            'company_name'].values
        new_company_names_df = new_company_names_df.loc[
            ~new_company_names_df['company_name'].isin(existing_company_names)]

    # print(f'**new_company_names_df: {new_company_names_df.shape}')
    if not new_company_names_df.empty:
        no_of_rows = new_company_names_df.shape[0]
        print('No of new company info to be added: ', no_of_rows)
        added_on_arr = get_np_array(no_of_rows, nav_date, 'object')
        new_company_names_df['added_on'] = added_on_arr
        dc = DbConfig()
        con = dc.get_engine()
        new_company_names_df.to_sql('company_info',
                                    con=con,
                                    if_exists='append',
                                    chunksize=1000,
                                    index=False)
        print(
            f'{no_of_rows}  new company info added for nav_date: {nav_date}...'
        )
def existing_company_info():
    dc = DbConfig()
    con = dc.get_engine()
    existing_company_sql = '''select distinct company_name,company_id from company_info'''
    existing_company_names_df = pd.read_sql_query(sql=existing_company_sql,
                                                  con=con,
                                                  params=None)
    return existing_company_names_df
def existing_scheme_detail():
    dc = DbConfig()
    con = dc.get_engine()
    sql = '''select scheme_id, scheme_code, scheme_name,isin, is_active from scheme_detail '''
    existing_scheme_detail_df = pd.read_sql_query(sql=sql,
                                                  con=con,
                                                  params=None)
    return existing_scheme_detail_df
def existing_fund_type():
    dc = DbConfig()
    con = dc.get_engine()
    existing_fund_type_sql = '''select distinct fund_type_name,fund_type_id from fund_type'''
    existing_fund_type_df = pd.read_sql_query(sql=existing_fund_type_sql,
                                              con=con,
                                              params=None)
    return existing_fund_type_df
def existing_scheme_type():
    dc = DbConfig()
    con = dc.get_engine()
    existing_scheme_type_sql = '''select distinct sch_type_name,sch_type_short_name,sch_type_id from scheme_type '''
    existing_scheme_type_df = pd.read_sql_query(sql=existing_scheme_type_sql,
                                                con=con,
                                                params=None)
    return existing_scheme_type_df
def last_daily_nav_insert_date():
    nav_dt = None
    dc = DbConfig()
    con = dc.get_engine()
    # nav_date_sql = '''select  max(nav_date) from daily_nav '''
    # for Sqlite because date column does not work with max function
    nav_date_sql = '''select nav_date from daily_nav where nav_id in ( select max(nav_id) from daily_nav)'''
    date_df = pd.read_sql_query(sql=nav_date_sql, con=con)
    if not date_df.empty:
        nav_dt = date_df['nav_date'].values[0]

    print(f'last daily nav insert date: {nav_dt}')
    return nav_dt
def insert_scheme_type(nav_scheme_type_df, nav_date):
    print(f'insert_scheme_type for nav_date: {nav_date}')

    nav_scheme_type_df = nav_scheme_type_df.drop_duplicates(
        subset=['sch_type_name', 'sch_type_short_name'])

    existing_scheme_type_df = existing_scheme_type()

    if existing_scheme_type_df.shape[0] != 0:
        existing_scheme_type_df['sch_type_nm_short_nm'] = existing_scheme_type_df['sch_type_name'] + \
                                                          existing_scheme_type_df['sch_type_short_name']
        new_sch_types = []
        for sch_type_row in nav_scheme_type_df.itertuples(index=False,
                                                          name='st_iter'):
            sch_type_name = getattr(sch_type_row, 'sch_type_name')
            sch_type_short_name = getattr(sch_type_row, 'sch_type_short_name')
            sch_type_nm_short_nm = sch_type_name + sch_type_short_name
            if sch_type_nm_short_nm not in existing_scheme_type_df[
                    'sch_type_nm_short_nm'].values:
                new_sch_types.append({
                    'sch_type_name': sch_type_name,
                    'sch_type_short_name': sch_type_short_name,
                    'added_on': nav_date
                })
        new_scheme_type_df = pd.DataFrame(new_sch_types)
    else:
        new_scheme_type_df = nav_scheme_type_df
        new_scheme_type_df['added_on'] = get_np_array(
            new_scheme_type_df.shape[0], nav_date, 'object')

    if not new_scheme_type_df.empty:
        no_of_rows = new_scheme_type_df.shape[0]
        print(
            f'{no_of_rows} new scheme_type to be added for nav_date : {nav_date}'
        )
        dc = DbConfig()
        con = dc.get_engine()
        new_scheme_type_df.to_sql('scheme_type',
                                  con=con,
                                  if_exists='append',
                                  chunksize=500,
                                  index=False)
        del new_scheme_type_df
        print(
            f'{no_of_rows} new scheme type added in scheme_type table for nav_date : {nav_date}'
        )
def close_scheme(tr_dt):
    today = datetime.strptime(tr_dt, '%d-%b-%Y')
    last_nav_date = AppUtils.get_prev_date_str(
        today_dt=today, no_of_days_back=EXPIRY_DAY_LIMIT, format='%d-%b-%Y')
    date_tuple = AppUtils.get_prev_dates_str(today, EXPIRY_DAY_LIMIT)
    print(
        f'calling close_scheme for nav_date: {tr_dt}, last_nav_date: {last_nav_date}, expiry day_limit: {EXPIRY_DAY_LIMIT},\n dates:{date_tuple}'
    )
    dc = DbConfig()
    engine = dc.get_engine()
    count_sql = f'''select scheme_id , count(scheme_id) count_present
                    from daily_nav 
                    where nav_date in {date_tuple} and nav_date != last_nav_date
                    and scheme_id in (select scheme_id from scheme_detail where is_active='Y')
                    group by scheme_id'''
    session = dc.get_session()
    try:
        session.begin()
        print(f'find scheme ids not present in last {EXPIRY_DAY_LIMIT} days.')
        scheme_count_df = pd.read_sql_query(con=engine, sql=count_sql)
        if not scheme_count_df.empty:
            expired_scheme_df = scheme_count_df.loc[
                scheme_count_df['count_present'] == EXPIRY_DAY_LIMIT]
            print(
                f'Nav date: {tr_dt}, No of scheme ids expired [{expired_scheme_df.shape[0]}] in last {EXPIRY_DAY_LIMIT} days.'
            )
            if not expired_scheme_df.empty:
                print(f'Nav date: {tr_dt}, close schemes one by one...')
                for ex_sch_row in expired_scheme_df.itertuples(index=False,
                                                               name='ex_iter'):
                    scheme_id = getattr(ex_sch_row, 'scheme_id')
                    sch_updt_qry = f'''update scheme_detail set is_active ='N', updated_on='{last_nav_date}' 
                                        where scheme_id = {scheme_id} '''
                    del_nav_qry = f'''delete from daily_nav where scheme_id = {scheme_id} 
                                    and carry_forward='Y' and last_nav_date='{last_nav_date}' '''
                    session.execute(sch_updt_qry)
                    session.execute(del_nav_qry)
                print(
                    f'{expired_scheme_df.shape[0]} scheme ids closed on {last_nav_date}....'
                )
        session.commit()
    except Exception:
        session.rollback()
        print(f'Exception in close_scheme for nav_date: {tr_dt}..')
        traceback.print_exc()
Exemplo n.º 10
0
def carry_forward_nav(tr_dt):
    today = datetime.strptime(tr_dt, '%d-%b-%Y')
    prev_dt_str = AppUtils.get_prev_date_str(today)
    print(
        f'carry_forward_nav for nav_date: {tr_dt}, previous date: {prev_dt_str}'
    )
    sql = f'''insert into daily_nav (scheme_id,nav_value,purchase_amt,sell_amt,nav_date,last_nav_date,carry_forward)
        select scheme_id, nav_value,purchase_amt,sell_amt,'{tr_dt}' nav_date, last_nav_date, 'Y' carry_forward 
        from daily_nav where nav_date = '{prev_dt_str}' and scheme_id not in
        (select scheme_id from daily_nav where nav_date = '{tr_dt}')'''
    dc = DbConfig()
    session = dc.get_session()
    try:
        session.begin()
        session.execute(sql)
        session.commit()
        print(
            f'carry_forward_nav executed for current_date: {tr_dt}, previous date: {prev_dt_str}'
        )
    except Exception:
        session.rollback()
        print(f'Exception in carry_forward_nav for nav_date: {tr_dt}..')
        traceback.print_exc()
Exemplo n.º 11
0
def insert_daily_nav(no_of_days=1):
    print(f'insert_daily_nav for no_of_days: {no_of_days}')
    msg = "Nav deta not found in nav_details table !!!!!!!"
    last_nav_date = None
    success = False
    try:
        last_nav_date = last_daily_nav_insert_date()

        dc = DbConfig()
        con = dc.get_engine()

        no_of_days_nxt = 1
        if not last_nav_date:
            print('Data not available in daily_nav table')
            no_of_days_nxt = 0
            print('find starting tr_date in nav_detail table')
            data_repo = NavDataRepository()
            last_nav_date = data_repo.get_last_tr_date()
        print(f'last_nav_date: {last_nav_date}')

        if last_nav_date:

            while no_of_days_nxt <= int(no_of_days):
                last_nav_dt = datetime.strptime(last_nav_date, '%d-%b-%Y')
                tr_date = AppUtils.get_next_date_str(
                    last_nav_dt,
                    no_of_days_nxt=no_of_days_nxt,
                    format='%d-%b-%Y')

                sql = '''select sch_code as scheme_code, mf_name as company_name, sch_name as scheme_name, isin_payout,isin_reinv,nav_value,
                purchase_amt,sell_amt,fund_status_type as sch_type_name, scheme_type as sch_type_short_name,fund_type as
                fund_type_name,tr_date, 'N' carry_forward from nav_details where tr_date = :tr_date '''
                print(f'find nav_details for tr_date: {tr_date}')
                nav_detail_df = pd.read_sql_query(sql=sql,
                                                  con=con,
                                                  params={'tr_date': tr_date})
                print(
                    f'No of NAV_DETAIL rows found [{nav_detail_df.shape[0]}] for tr_date: {tr_date}.'
                )

                if not nav_detail_df.empty:
                    populate_master_data_tables(nav_detail_df, tr_date)
                    daily_nav_df = pd.DataFrame()
                    daily_nav_df[['nav_value', 'purchase_amt', 'sell_amt', 'nav_date', 'carry_forward']] = \
                    nav_detail_df[
                        ['nav_value', 'purchase_amt', 'sell_amt', 'tr_date', 'carry_forward']]
                    daily_nav_df['last_nav_date'] = nav_detail_df['tr_date']

                    existing_scheme_detail_df = existing_scheme_detail()
                    sch_ids = []
                    for nav_row in nav_detail_df.itertuples(
                            index=False, name='daily_nav_iter'):
                        sch_nm = getattr(nav_row, 'scheme_name')
                        sch_nm = sch_nm.strip()
                        sch_id = existing_scheme_detail_df.loc[
                            existing_scheme_detail_df['scheme_name'] == sch_nm,
                            'scheme_id']
                        if sch_id.empty:
                            sch_id = existing_scheme_detail_df.loc[
                                existing_scheme_detail_df['scheme_name'] ==
                                sch_nm + PAYOUT, 'scheme_id']
                        if sch_id.empty:
                            sch_id = existing_scheme_detail_df.loc[
                                existing_scheme_detail_df['scheme_name'] ==
                                sch_nm + REINVEST, 'scheme_id']
                        sch_ids.append(sch_id.values[0])
                    # sch_cond = (existing_scheme_detail_df['scheme_name'].isin(nav_detail_df['scheme_name']) |
                    # existing_scheme_detail_df['scheme_name'].isin(nav_detail_df['scheme_name'].str.cat(PAYOUT)) |
                    # existing_scheme_detail_df['scheme_name'].isin(nav_detail_df['scheme_name'].str.cat(REINVEST))
                    # daily_nav_df['scheme_id'] = existing_scheme_detail_df.loc[sch_cond,'scheme_id']
                    daily_nav_df['scheme_id'] = sch_ids
                    del nav_detail_df
                    print('insert_daily_nav Nav date: {tr_date}')
                    daily_nav_df.to_sql('daily_nav',
                                        con=con,
                                        chunksize=1000,
                                        index=False,
                                        if_exists='append')
                    print(
                        f'Nav date: {tr_date}, No of Nav rows inserted: {daily_nav_df.shape[0]}'
                    )
                    del daily_nav_df

                    if no_of_days_nxt > 1:
                        print(f'carry_forward_nav for nav_date: {tr_date}')
                        carry_forward_nav(tr_date)
                        print(
                            f'close_scheme for nav_date: {tr_date}, EXPIRY_DAY_LIMIT: {EXPIRY_DAY_LIMIT}'
                        )
                        close_scheme(tr_date)

                no_of_days_nxt = no_of_days_nxt + 1

            msg = f"Daily Nav details populated for {no_of_days} days starting from {last_nav_date} !!!!!!!"
        else:
            print('Nav Detail Table is empty!!!!!!!!!!')
        success = True
    except Exception:
        msg = f"Failed to populate daily Nav details for {no_of_days} days starting from {last_nav_date} !!!!!!!"
        print(f'Exception in insert_daily_nav for nav_date: {last_nav_date}..')
        traceback.print_exc()
    return {'message': msg, 'success': success}
Exemplo n.º 12
0
 def __init__(self):
     self.db = DbConfig()
Exemplo n.º 13
0
class NavDataRepository:
    def __init__(self):
        self.db = DbConfig()

    def save_nav_history_data(self, search_param=None):
        print('save_nav_history_data for search_param: ', search_param)
        msg = None
        success = False
        frmdt = None
        try:
            if search_param:
                frmdt = search_param[
                    'frmdt'] if 'frmdt' in search_param else '01-Apr-2006'
            else:
                last_tr_date = self.get_last_tr_date()
                frmdt = last_tr_date if last_tr_date else '01-Apr-2006'

            print(f'save_nav_history_data From Date: {frmdt}')
            dt_obj = datetime.datetime.strptime(frmdt, '%d-%b-%Y')
            today = datetime.datetime.today()
            prevday = today - datetime.timedelta(days=1)
            no_of_days = 0
            while dt_obj <= prevday:
                frmdt = dt_obj.strftime('%d-%b-%Y')
                search_param = {'frmdt': frmdt, 'todt': frmdt}
                sql = 'select sch_code from nav_details where tr_date= :frmdt'
                result = pd.read_sql_query(sql=sql,
                                           con=self.db.get_engine(),
                                           params={'frmdt': frmdt})
                if result.empty:
                    print('save_nav_history_data for date: ', frmdt)
                    pr = ParseNavData()
                    nav_details_df = pr.get_nav_history(search_param)
                    print(
                        f'Nav Date: {frmdt}, no of rows collected : {nav_details_df.shape[0]}'
                    )
                    nav_details_df.to_sql('nav_details',
                                          con=self.db.get_engine(),
                                          chunksize=2000,
                                          if_exists='append',
                                          index=False)
                    print(
                        f'Nav Date: {frmdt}, no of rows saved : {nav_details_df.shape[0]}..'
                    )
                    del nav_details_df
                    print(f'nav data collected for : {frmdt}..')
                    no_of_days += 1
                else:
                    msg = f'Nav data already available for date: {frmdt}'
                dt_obj = dt_obj + datetime.timedelta(days=1)
            if no_of_days > 0:
                msg = f'Nav data collected for {no_of_days} starting from {frmdt}.'
            success = True
        except Exception:
            msg = f'Failed to collect Nav data for nav_date: {frmdt}'
            print(msg)
            traceback.print_exc()
        print(msg)
        return {'message': msg, 'success': success}

    def find_nav_history_data(self):
        sql = 'select * from nav_details'
        result_df = pd.read_sql_query(sql, con=self.db.get_engine())
        result_df.to_csv('E:/office work/NavHistory.csv', index=False)

    def get_last_tr_date(self):
        # tr_date_sql = '''select min(tr_date) nav_date from nav_details'''
        tr_date_sql = '''select tr_date as nav_date from nav_details where nav_data_id in 
                                    (select min(nav_data_id) from nav_details)'''
        date_df = pd.read_sql_query(sql=tr_date_sql, con=self.db.get_engine())
        last_nav_date = None if date_df.empty else date_df['nav_date'].values[0]
        return last_nav_date
def insert_scheme_detail(nav_scheme_detail_df, nav_date):
    print(f'insert scheme detail for nav_date: {nav_date}')
    existing_company_names_df = existing_company_info()
    existing_fund_type_df = existing_fund_type()
    existing_scheme_type_df = existing_scheme_type()
    existing_scheme_detail_df = existing_scheme_detail()

    has_value = lambda value: True if value and len(value) > 0 else False

    rows = []

    for nav_sch_row in nav_scheme_detail_df.itertuples(index=False,
                                                       name='nav_sch_iter'):
        isin_payout = getattr(nav_sch_row, 'isin_payout')
        isin_reinv = getattr(nav_sch_row, 'isin_reinv')
        sch_code = getattr(nav_sch_row, 'scheme_code')
        sch_name = getattr(nav_sch_row, 'scheme_name')
        company_name = getattr(nav_sch_row, 'company_name')
        sch_type_name = getattr(nav_sch_row, 'sch_type_name')
        sch_type_short_name = getattr(nav_sch_row, 'sch_type_short_name')
        fund_type_name = getattr(nav_sch_row, 'fund_type_name')
        tr_dt = getattr(nav_sch_row, 'tr_date')

        # comp_id = company_info_df.loc[company_info_df['company_name'] == company_name, 'company_id'].values[0]
        comp_id = get_company_id(existing_company_names_df, company_name)
        fnd_typ_id = get_fund_type_id(existing_fund_type_df, fund_type_name)
        sch_ty_id = get_sch_type_id(existing_scheme_type_df, sch_type_name,
                                    sch_type_short_name)

        # print('fund_type_name: ', fund_type_name, ' fund_type_id: ', fnd_typ_id)

        if has_value(isin_reinv) and has_value(isin_payout) and (
            (PAYOUT not in sch_name) or (REINVEST not in sch_name)):
            p_sch_name = sch_name + PAYOUT
            p_row = create_scheme_detail_row(sch_code, p_sch_name, isin_payout,
                                             comp_id, sch_ty_id, fnd_typ_id,
                                             tr_dt)
            rows.append(p_row)
            r_sch_name = sch_name + REINVEST
            r_row = create_scheme_detail_row(sch_code, r_sch_name, isin_reinv,
                                             comp_id, sch_ty_id, fnd_typ_id,
                                             tr_dt)
            rows.append(r_row)
        else:
            isin_val = isin_payout if has_value(isin_payout) else isin_reinv
            row = create_scheme_detail_row(sch_code, sch_name, isin_val,
                                           comp_id, sch_ty_id, fnd_typ_id,
                                           tr_dt)
            rows.append(row)

    if len(rows) > 0:
        print(
            f'No of new schemes to be inserted {len(rows)} for nav_date: {nav_date}'
        )
        scheme_detail_df = pd.DataFrame(rows)
        scheme_detail_df = scheme_detail_df.drop_duplicates(
            subset='scheme_name', keep=False)
        # print('******* scheme detail Before: ', scheme_detail_df.shape[0])
        if not existing_scheme_detail_df.empty:
            print(
                'Remove existing schemes to avoid duplicate rows in scheme details table....'
            )
            existing_sch_names = existing_scheme_detail_df[
                'scheme_name'].values
            scheme_detail_df = scheme_detail_df.loc[
                ~scheme_detail_df['scheme_name'].isin(existing_sch_names)]

        no_of_rows = scheme_detail_df.shape[0]
        scheme_detail_df['added_on'] = get_np_array(no_of_rows, nav_date,
                                                    'object')
        print(
            f'{no_of_rows} new scheme detail will be added for nav_date: {nav_date}'
        )
        dc = DbConfig()
        con = dc.get_engine()
        scheme_detail_df.to_sql('scheme_detail',
                                con=con,
                                if_exists='append',
                                chunksize=1000,
                                index=False)
        print(
            f'{no_of_rows} new scheme detail is added for nav_date: {nav_date}...'
        )
Exemplo n.º 15
0
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy import Column, INTEGER, String, DATE, FLOAT, DATETIME, BIGINT
from src.config.db_config import DbConfig

dc = DbConfig()

Base = declarative_base()


class nav_details(Base):
    __tablename__ = 'nav_details'
    nav_data_id = Column(INTEGER, primary_key=True)
    tr_date = Column(DATE, nullable=False)
    sch_code = Column(String(50))
    mf_name = Column(String(200))
    sch_name = Column(String(250))
    isin_payout = Column(String(50))
    isin_reinv = Column(String(50))
    nav_value = Column(FLOAT, nullable=False)
    purchase_amt = Column(FLOAT)
    sell_amt = Column(FLOAT)
    fund_status_type = Column(String(200))
    scheme_type = Column(String(200))
    fund_type = Column(String(200))


class scheme_type(Base):
    __tablename__ = 'scheme_type'
    sch_type_id = Column(INTEGER, primary_key=True)
    sch_type_short_name = Column(String, nullable=False)
    sch_type_name = Column(String, nullable=False)