Exemplo n.º 1
0
def update_team_comparison(year, indicators, metric, hover_data, click_data):
    df1 = subset_years(df_eoy, year)

    dff = df1.melt(id_vars='team', value_vars=indicators, var_name='indicator')

    dff['indicator'] = pd.Categorical(dff.indicator, indicators)
    dff = pd.merge(dff, palette_df, how='outer')
    dff = dff.sort_values(['indicator', 'team'], ascending=[False, True])
    dff["rank"] = dff.groupby("indicator")["value"].rank("min",
                                                         ascending=False)

    if hover_data:
        i = hover_data['points'][0]['curveNumber']
    elif click_data:
        i = click_data['points'][0]['curveNumber']
    else:
        i = 0
    marker_sizes = [10] * len(dff.team.unique())
    line_widths = [0.4] * len(dff.team.unique())
    marker_sizes[i] = 20
    line_widths[i] = 2

    metric2 = "value"
    if metric == "value":
        metric2 = "rank"

    return {
        'data': [
            go.Scatter(
                x=dff[dff.team == t][metric],
                y=dff[dff.team == t]['indicator'],
                name=t,
                text=round(dff[dff.team == t][metric2], 2),
                mode='markers+lines',
                marker={
                    'size': marker_sizes[i],  # 10
                    'color': dff[dff.team == t]['color1'],
                    'line': {
                        'width': 2,
                        'color': dff[dff.team == t]['color2']
                    }
                },
                line={
                    'width': line_widths[i],
                    'color': map_colors(t, palette, 1)
                }) for i, t in enumerate(dff.team.unique())
        ],
        'layout':
        go.Layout(
            # title=team,
            xaxis=dict(title=metric, titlefont=dict(size=18)),
            height=200 + 100 * len(indicators),
            margin={
                'l': 200,
                'b': 40,
                't': 40,
                'r': 40
            },
            hovermode='closest')
    }
Exemplo n.º 2
0
def update_matchup_heatmap(division, year, indicator):
    df1 = subset_years(df_t_wide, year)

    teams = division_dict[division]
    opponents = division_dict[division]

    df1 = df1.loc[(df1.team.isin(teams)) & (df1.opponent.isin(opponents))]
    df1 = df1.groupby(['team', 'opponent'])[indicator].mean().reset_index()

    df1 = df1.sort_values(['team', 'opponent'], ascending=[False, True])  #

    return {
        'data': [
            go.Heatmap(z=round(df1[indicator], 2),
                       x=df1.opponent,
                       y=df1.team,
                       reversescale=True,
                       text=[indicator] * len(df1),
                       hoverinfo='z+text')
        ],
        'layout':
        go.Layout(title=f'Average {indicator} by matchup',
                  margin={
                      'l': 200,
                      'b': 40,
                      't': 40,
                      'r': 40
                  },
                  yaxis=dict(title='Team'),
                  xaxis=dict(title='Opponent'))
    }
Exemplo n.º 3
0
def update_players(team, year, indicators, min_games, rate_type, hover_data,
                   click_data):
    df1 = subset_years(df_p, year)

    df1 = df1[df1.team == team]
    df1 = apply_game_threshold(df1, n_games=min_games)
    dff = df1.groupby('player')[player_indicators].sum().reset_index()
    dff = aggregate_rates(dff, player_indicators, rate_type)
    dff = dff.melt(id_vars='player',
                   value_vars=indicators,
                   var_name='indicator')

    dff['indicator'] = pd.Categorical(dff.indicator, indicators)
    dff = dff.sort_values(['indicator', 'player'], ascending=[False, True])

    players = dff.player.unique()

    if hover_data:
        i = hover_data['points'][0]['curveNumber']
    elif click_data:
        i = click_data['points'][0]['curveNumber']
    else:
        i = 0
    opacities = [0.5] * len(players)
    marker_sizes = [10] * len(players)
    line_widths = [0.4] * len(players)
    opacities[i] = 1
    marker_sizes[i] = 20
    line_widths[i] = 2

    return {
        'data': [
            go.Scatter(
                x=dff[dff.player == p]['value'],
                y=dff[dff.player == p]['indicator'],
                name=p,
                mode='markers+lines',
                marker={
                    'size': marker_sizes[i],
                    'opacity': opacities[i],
                    # 'line': {'width': 0}
                },
                line={'width': line_widths[i]}) for i, p in enumerate(players)
        ],
        'layout':
        go.Layout(
            # title=team,
            height=80 + 80 * len(indicators),
            margin={
                'l': 120,
                'b': 40,
                't': 40,
                'r': 40
            },
            hovermode='closest')
    }
Exemplo n.º 4
0
def make_conversion_plot(team, year, line):
    """TODO - refactor so easier to move to viz utils, for now it has too many dependencies"""
    df1 = subset_years(df_p, year)

    df1 = df1[df1.team == team]

    # Todo - add this to player indicators?
    df1['Proportion Offensive'] = df1[f'O Points Played'] / df1['Points Played']

    title = ""
    if line == 'O':
        title = "Offense"
    elif line == 'D':
        title = "Defense"

    return {
        'data': [
            go.Scatter(
                x=df1[f'{line} Points Played'],
                y=df1[f'{line}-line Scoring Efficiency'],
                # name=p,
                mode='markers',
                marker=dict(
                    color=df1['Proportion Offensive'],
                    colorscale='RdBu',
                    reversescale=True,
                    showscale=True,
                    colorbar=dict(title='% Offensive', ),
                ),
                text=df1['player'],
                # 'size': 10,
                # 'opacity': 0.5,
                # 'line': {'width': 0}
                # line={'width': 0.4}
            )
        ],
        'layout':
        go.Layout(
            # title=title,
            height=400,
            margin={
                'l': 120,
                'b': 40,
                't': 40,
                'r': 40
            },
            hovermode='closest',
            yaxis=dict(
                range=[0, 1],
                title=f'{line}-line Scoring Efficiency',
            ),
            xaxis=dict(title=f'Points Played ({line})'))
    }
Exemplo n.º 5
0
def update_leaderboard(indicator, year, rate_type, min_games):
    df1 = subset_years(df_p, year)
    df1 = apply_game_threshold(df1, n_games=min_games)

    dff = df1.groupby('player')[player_indicators].sum().reset_index()
    dff = aggregate_rates(dff, player_indicators, rate_type)

    dff = dff.melt(id_vars='player',
                   value_vars=player_indicators,
                   var_name='indicator')
    n_players = 20
    dff = dff[dff.indicator == indicator]
    # Get correct team & color for specific year
    if year == 'All seasons':
        player_map = player_team[player_team['year'] == 2018]
    else:
        player_map = player_team[player_team['year'] == year]
    dff = pd.merge(player_map, dff)
    dff = pd.merge(dff, palette_df,
                   how='outer').sort_values('value',
                                            ascending=False)[:n_players]
    dff = dff.sort_values('value',
                          ascending=True)  # plotly seems to invert the order?

    return {
        'data': [
            go.Scatter(
                x=dff['value'],
                y=dff['player'],
                text=dff['team'],
                mode='markers',
                marker={
                    'size': 15,
                    'color': dff['color1'],
                    'line': {
                        'width': 3,
                        'color': dff['color2']
                    }
                },
            )
        ],
        'layout':
        go.Layout(
            # title=indicator,
            height=600,
            margin={
                'l': 120,
                'b': 40,
                't': 40,
                'r': 0
            },
            hovermode='closest')
    }
Exemplo n.º 6
0
def update_team_timeseries(team, year, indicators):
    df1 = subset_years(df_t, year)

    df1 = df1[df1.team == team]

    dff = df1.sort_values(['indicator', 'date'], ascending=[False, True])

    return {
        'data': [
            go.Scatter(
                x=dff[dff.indicator == i]['date'],
                y=dff[dff.indicator == i]['value'],
                name=i,
                text=dff['opponent'],
                mode='lines+markers',
                marker={
                    'size': 15,
                    # 'opacity': 0.5,
                    'color': dff['opponent_color1'],
                    'line': {
                        'width': 3,
                        'color': dff['opponent_color2']
                    }
                },
                line={'width': 3}) for i in indicators
        ],
        'layout':
        go.Layout(
            # title=team,
            height=400,
            margin={
                'l': 120,
                'b': 40,
                't': 40,
                'r': 40
            },
            hovermode='closest')
    }