Exemplo n.º 1
0
def load_data(dataset, opt):
    if dataset == "atomic":
        data_loader = load_atomic_data(opt)
    elif dataset == "conceptnet":
        data_loader = load_conceptnet_data(opt)

    # Initialize TextEncoder
    encoder_path = "model/encoder_bpe_40000.json"
    bpe_path = "model/vocab_40000.bpe"
    text_encoder = TextEncoder(encoder_path, bpe_path)
    text_encoder.encoder = data_loader.vocab_encoder
    text_encoder.decoder = data_loader.vocab_decoder

    return data_loader, text_encoder
Exemplo n.º 2
0
def load_data(dataset, opt, LoaderPath=""):
    if dataset == "atomic":
        data_loader = load_atomic_data(opt, LoaderPath)
    elif dataset == "conceptnet":
        data_loader = load_conceptnet_data(opt)

    # Initialize TextEncoder
    encoder_path = "model/encoder_bpe_40000.json"
    bpe_path = "model/vocab_40000.bpe"
    text_encoder = TextEncoder(encoder_path, bpe_path)
    #print(text_encoder.encoder)##DEBUG
    #print('\n\n\n\n\n\n')#DEBUG
    #print(text_encoder.encoder)#DEBUG
    text_encoder.encoder = data_loader.vocab_encoder
    text_encoder.decoder = data_loader.vocab_decoder
    #print('SLOVENE')#DEBUG
    #print('\n\n\n\n\n\n')#DEBUG
    #print(text_encoder.encoder)#DEBUG
    #print('to sam ya')

    return data_loader, text_encoder
Exemplo n.º 3
0
def main(num):
    # Generate configuration files depending on experiment being run
    utils.generate_config_files("atomic", num)

    # Loads the correct configuration file
    config_file = "config/atomic/config_{}.json".format(num)

    print(config_file)

    # Read config file to option
    config = cfg.read_config(cfg.load_config(config_file))
    opt, meta = cfg.get_parameters(config)

    # Set the random seeds
    torch.manual_seed(opt.train.static.seed)
    random.seed(opt.train.static.seed)
    if config.gpu_mode:
        torch.cuda.manual_seed_all(opt.train.static.seed)

    # Where to find the data
    splits = ["train", "dev", "test"]

    opt.train.dynamic.epoch = 0

    print("Loading Data")

    categories = opt.data.categories

    path = "data/atomic/processed/{}/{}.pickle".format(
        opt.exp, utils.make_name_string(opt.data))

    data_loader = data.make_data_loader(opt, categories)
    loaded = data_loader.load_data(path)
    print(data_loader.sequences["train"]["total"].size(0))
    data_loader.opt = opt
    data_loader.batch_size = opt.train.dynamic.bs

    print("Done.")

    # Initialize text_encoder
    text_encoder = TextEncoder(config.encoder_path, config.bpe_path)

    special = [data.start_token, data.end_token]
    special += ["<{}>".format(cat) for cat in categories]
    special += [data.blank_token]

    text_encoder.encoder = data_loader.vocab_encoder
    text_encoder.decoder = data_loader.vocab_decoder

    opt.data.maxe1 = data_loader.max_event
    opt.data.maxe2 = data_loader.max_effect
    opt.data.maxr = data.atomic_data.num_delimiter_tokens["category"]

    n_special = len(special)
    n_ctx = opt.data.maxe1 + opt.data.maxe2
    n_vocab = len(text_encoder.encoder) + n_ctx

    print(data_loader.__dict__.keys())
    opt.net.vSize = n_vocab

    print("Building Model")

    model = models.make_model(opt,
                              n_vocab,
                              n_ctx,
                              n_special,
                              load=(opt.net.init == "pt"))

    print("Done.")

    print("Files will be logged at: {}".format(
        utils.make_name(opt, prefix="results/losses/", is_dir=True,
                        eval_=True)))

    data_loader.reset_offsets("train")

    # Get number of examples
    data.set_max_sizes(data_loader)

    if config.gpu_mode:
        print("Pushing to GPU: {}".format(config.gpu_index))
        cfg.device = config.gpu_index
        cfg.do_gpu = True
        torch.cuda.set_device(cfg.device)
        if config.multigpu:
            model = models.multi_gpu(model, config.gpu_indices).cuda()
        else:
            model.cuda(cfg.device)
        print("Done.")

    print("Training")

    optimizer = OpenAIAdam(model.parameters(),
                           lr=opt.train.dynamic.lr,
                           schedule=opt.train.static.lrsched,
                           warmup=opt.train.static.lrwarm,
                           t_total=meta.iterations,
                           b1=opt.train.static.b1,
                           b2=opt.train.static.b2,
                           e=opt.train.static.e,
                           l2=opt.train.static.l2,
                           vector_l2=opt.train.static.vl2,
                           max_grad_norm=opt.train.static.clip)

    scorers = ["bleu", "rouge", "cider"]
    trainer = train.make_trainer(opt, meta, data_loader, model, optimizer)
    trainer.set_evaluator(opt, model, data_loader)

    trainer.run()
Exemplo n.º 4
0
    data_loader.batch_size = opt.train.dynamic.bs

    print("Done.")

    text_encoder = TextEncoder(config.encoder_path, config.bpe_path)

    # Set special tokens
    formatted_categories = ["<{}>".format(cat) for cat in opt.data.categories]

    special = [data.start_token, data.end_token]
    special += formatted_categories
    special += [data.blank_token]

    # Load vocab encoder and decoder from pre-initialized data_loader
    text_encoder.encoder = data_loader.vocab_encoder
    text_encoder.decoder = data_loader.vocab_decoder

    # Get component segmentation of sequences
    # context_size_event = maximum size of an event description
    # context_size_effect = maximum size of an event effect/intent/etc.
    context_size_event = data_loader.max_event
    context_size_effect = data_loader.max_effect

    n_special = len(special)
    n_ctx = context_size_event + context_size_effect
    n_vocab = len(text_encoder.encoder) + n_ctx

    opt.net.vSize = n_vocab

    # Prune data from data loader depending on the evaluation set
    if not all([i in opt.eval.categories for i in opt.data.categories]):
Exemplo n.º 5
0
def main(num):
    # Generate configuration files depending on experiment being run
    utils.generate_config_files("conceptnet", num)

    # Loads the correct configuration file
    config_file = "config/conceptnet/config_{}.json".format(num)

    print(config_file)

    # Read config file to option
    config = cfg.read_config(cfg.load_config(config_file))
    opt, meta = cfg.get_parameters(config)

    # config.gpu_mode = torch.cuda.is_available()

    # Set the random seeds
    torch.manual_seed(opt.train.static.seed)
    random.seed(opt.train.static.seed)
    if config.gpu_mode:
        torch.cuda.manual_seed_all(opt.train.static.seed)

    # Load the data
    splits = ["train", "dev", "test"]

    opt.train.dynamic.epoch = 0

    print("Loading Data")

    # Initialize path to pre-set data loader
    path = "data/conceptnet/processed/{}/{}.pickle".format(
        opt.exp, utils.make_name_string(opt.data))

    # Make data loader
    data_loader = data.make_data_loader(opt)
    loaded = data_loader.load_data(path)
    print(data_loader.sequences["train"]["total"].size(0))
    data_loader.opt = opt
    data_loader.batch_size = opt.train.dynamic.bs

    print("Done.")

    text_encoder = TextEncoder(config.encoder_path, config.bpe_path)

    categories = data.conceptnet_data.conceptnet_relations

    special = [data.start_token, data.end_token]
    special += ["<{}>".format(cat) for cat in categories]

    if loaded:
        text_encoder.encoder = data_loader.vocab_encoder
        text_encoder.decoder = data_loader.vocab_decoder
    else:
        for special_token in special:
            text_encoder.decoder[len(encoder)] = special_token
            text_encoder.encoder[special_token] = len(encoder)
        data_loader.make_tensors(text_encoder, special)

    # Set max size of different parts of relation
    context_size_e1 = data_loader.max_e1
    context_size_e2 = data_loader.max_e2
    context_size_r = data_loader.max_r

    opt.data.maxr = context_size_r

    n_special = len(special)
    n_ctx = context_size_e1 + context_size_r + context_size_e2
    n_vocab = len(text_encoder.encoder) + n_ctx

    print(data_loader.__dict__.keys())
    opt.net.vSize = n_vocab

    # Build Model
    print("Building Model")

    model = models.make_model(opt,
                              n_vocab,
                              n_ctx,
                              n_special,
                              load=(opt.net.init == "pt"))

    print("Done.")

    print("Files will be logged at: {}".format(
        utils.make_name(opt, prefix="results/losses/", is_dir=True,
                        eval_=True)))

    data_loader.reset_offsets("train", keys=["total"])

    data.set_max_sizes(data_loader)

    # Push to GPU
    if config.gpu_mode:
        print("Pushing to GPU: {}".format(config.gpu_index))
        cfg.device = config.gpu_index
        cfg.do_gpu = True
        torch.cuda.set_device(cfg.device)
        if config.multigpu:
            model = models.multi_gpu(model, config.gpu_indices).cuda()
        else:
            model.cuda(cfg.device)
        print("Done.")

    print("Training")

    optimizer = OpenAIAdam(model.parameters(),
                           lr=opt.train.dynamic.lr,
                           schedule=opt.train.static.lrsched,
                           warmup=opt.train.static.lrwarm,
                           t_total=meta.iterations,
                           b1=opt.train.static.b1,
                           b2=opt.train.static.b2,
                           e=opt.train.static.e,
                           l2=opt.train.static.l2,
                           vector_l2=opt.train.static.vl2,
                           max_grad_norm=opt.train.static.clip)

    trainer = train.make_trainer(opt, meta, data_loader, model, optimizer)
    print(data_loader.sequences["dev"]["total"].max())
    trainer.set_generator(opt, model, data_loader)
    trainer.set_evaluator(opt, model, data_loader)

    trainer.run()
    # Set special tokens
    formatted_categories = ["<{}>".format(cat) for cat in opt.data.categories]

    special = [data.start_token, data.end_token]
    special += formatted_categories
    special += [data.blank_token]

    #ipdb.set_trace()
    if not args.model_pickled_data == None:
        model_data_loader = data.make_data_loader(opt, opt.data.categories)
        _loaded = model_data_loader.load_data(args.model_pickled_data)

        # Load vocab encoder and decoder from pre-initialized data_loader
        text_encoder.encoder = model_data_loader.vocab_encoder
        text_encoder.decoder = model_data_loader.vocab_decoder

        # Get component segmentation of sequences
        # context_size_event = maximum size of an event description
        # context_size_effect = maximum size of an event effect/intent/etc.
        context_size_event = model_data_loader.max_event
        context_size_effect = model_data_loader.max_effect

        n_special = len(special)
        n_ctx = context_size_event + context_size_effect
        n_vocab = len(text_encoder.encoder) + n_ctx

        opt.net.vSize = n_vocab
    else:
        # Load vocab encoder and decoder from pre-initialized data_loader
        text_encoder.encoder = data_loader.vocab_encoder