def update_ts_graph(zipcode, radius, date_window_option='ALL', region_of_interest=[]): print('zipcode: {}'.format(zipcode)) if len(zipcode) == 5: radius = float(radius) recs = geoSvr.search_by_zipcode('Confirmed', zipcode, radius) # list of (county,state) region_options = ['{}, {}'.format(r[0], r[1]) for r in recs] # region_defaults = ['{}, {}'.format(r[0],r[1]) for r in recs] ds = CSBS() dt_range = ds.date_range_str(date_window_option) if region_of_interest is None: region_of_interest = [] # print('len of region_options:{}, of region_of_interest:{}'.format(region_options is None, region_of_interest is None)) if set(region_of_interest).isdisjoint(region_options): region_of_interest = region_options confirmed = ds.refresh_county_state_category('Confirmed', date_window_option, region_of_interest) deaths = ds.refresh_county_state_category('Deaths', date_window_option, region_of_interest) return plot_ts_figure(confirmed, 'Confirmed', dt_range), \ plot_ts_figure(deaths, 'Deaths', dt_range), \ plot_inc_number(confirmed, 'Confirmed', dt_range), \ plot_inc_number(deaths, 'Deaths', dt_range), \ plot_increase(confirmed, 'Confirmed', dt_range), \ plot_increase(deaths, 'Deaths', dt_range), \ 'Time Window:{}'.format(dt_range), \ [{'label': x, 'value': x} for x in region_options]
def load_region_options(): ds = CSBS() ds.dataSet['Confirmed'] = ds.dataSet['Confirmed'].fillna(0) ds.dataSet['Deaths'] = ds.dataSet['Deaths'].fillna(0) # data_list_confirmed, data_list_deaths, data_list_recovered, date_list, region_of_interest = utl.load_data_2() region_of_interest = ds.regions() region_options = [{'label': x, 'value': x} for x in region_of_interest] return region_options
def load_options(): ds = CSBS() # data_list_confirmed, data_list_deaths, data_list_recovered, date_list, region_of_interest = utl.load_data_2() region_of_interest = ds.regions() options = [{'label': x, 'value': x} for x in region_of_interest] defaults = region_of_interest[:7] return options, defaults
def __init__(self): search = SearchEngine() self.defaultZipcodeInfo = search.by_zipcode('22030') self.defaultRadius = 70 self.ds = CSBS() print('.... geoClass Initialized, id(self.ds):{}'.format(id(self.ds)))
def update_graph(date_window_option, region_of_interest): ds = CSBS() dt_range = ds.date_range_str(date_window_option) confirmed = ds.refresh_category('Confirmed', date_window_option, region_of_interest) deaths = ds.refresh_category('Deaths', date_window_option, region_of_interest) return plot_figure(confirmed, 'Confirmed', dt_range), \ plot_figure(deaths, 'Deaths', dt_range), \ plot_inc_number(confirmed, 'Confirmed', dt_range), \ plot_inc_number(deaths, 'Deaths', dt_range), \ plot_increase(ds, 'Confirmed', region_of_interest), \ plot_increase(ds, 'Deaths', region_of_interest), \ 'Time Window:{}'.format(dt_range)
# tmp_y = us_cases[i:i+window_size] # xs = np.array(tmp_x, dtype=np.float64) # ys = np.array(tmp_y, dtype=np.float64) # mean_y = np.average(ys) # slopes.append(best_fit_slope(xs,ys)/mean_y if mean_y>0 else 0) # five_days.append(xs[-1]) # values.append(ys) # # df_5d = pd.DataFrame({'fivedate':five_days,'slope':slopes}) # country_slopes.append({'Country':country, 'five-date':five_days,'slope':slopes,'value':values}) ax = sns.lineplot(x=country_slopes[0]['five-date'], y=country_slopes[0]['slope']) plt.show() ds = CSBS() df_ds = ds.dataSet['Confirmed'] df_ds['county_state'] = df_ds['County_Name'] + ', ' + df_ds['State_Name'] county_list = df_ds['county_state'].unique().tolist() county_slopes = get_slopes(df_ds, column_name='county_state', patten='2020-', strp='%Y-%m-%d') s = 2 ax = sns.lineplot(x=county_slopes[s]['five-date'], y=county_slopes[s]['slope']) #################################### N = 100000 G = nx.fast_gnp_random_graph(N, 25. / (N - 1)) # they will vary in the rate of leaving exposed class.