Exemplo n.º 1
0
def plot_r_tau_density(filename, aTau, aR, dPar, majorEQ):
    a_Tbin = np.arange(dPar['Tmin'], dPar['Tmax'] + 2 * dPar['binx'],
                       dPar['binx'])
    a_Rbin = np.arange(dPar['Rmin'], dPar['Rmax'] + 2 * dPar['biny'],
                       dPar['biny'])
    XX, YY, ZZ = density_2D(aTau, aR, a_Tbin, a_Rbin, sigma=dPar['sigma'])
    plt.figure(1, figsize=(8, 10))
    ax = plt.subplot(111)
    normZZ = ZZ * (dPar['binx'] * dPar['biny'] * len(aTau))
    plot1 = ax.pcolormesh(XX, YY, normZZ, cmap=dPar['cmap'])
    cbar = plt.colorbar(
        plot1,
        orientation='horizontal',
        shrink=.5,
        aspect=20,
    )
    # plot eta_0 to divide clustered and background mode
    ax.plot([dPar['Tmin'], dPar['Tmax']],
            -np.array([dPar['Tmin'], dPar['Tmax']]) + dPar['eta_0'],
            '-',
            lw=1.5,
            color='w')
    ax.plot([dPar['Tmin'], dPar['Tmax']],
            -np.array([dPar['Tmin'], dPar['Tmax']]) + dPar['eta_0'],
            '--',
            lw=1.5,
            color='.5')
    cbar.set_label('Number of Event Pairs', labelpad=-40)
    ax.set_xlabel('Rescaled Time')
    ax.set_ylabel('Rescaled Distance')
    ax.set_title("Year:%d Mag:%.1f/nNearest Neighbor Pairs in R-T" %
                 (majorEQ.data['Time'], majorEQ.data['Mag']))
    plt.savefig(filename, dpi=500)
    plt.clf()
Exemplo n.º 2
0
                                           'D': dPar['D'],
                                           'Mc': f_Mc
                                       },
                                       correct_co_located=True)
    RT_file = 'data/df1.8/%s_RT_Mc_%.1f.mat' % (file_in.split('.')[0], f_Mc)
    scipy.io.savemat(RT_file, {'R': a_R, 'T': a_T}, do_compression=True)
    #==================================4==============================================================
    #                       T-R density plots
    #=================================================================================================
    a_Tbin = np.arange(dPar['Tmin'], dPar['Tmax'] + 2 * dPar['binx'],
                       dPar['binx'])
    a_Rbin = np.arange(dPar['Rmin'], dPar['Rmax'] + 2 * dPar['biny'],
                       dPar['biny'])
    XX, YY, ZZ = data_utils.density_2D(np.log10(a_T),
                                       np.log10(a_R),
                                       a_Tbin,
                                       a_Rbin,
                                       sigma=dPar['sigma'])

    plt.figure(1, figsize=(8, 10))
    ax = plt.subplot(111)
    ax.set_title('Nearest Neighbor Pairs in R-T')
    #------------------------------------------------------------------------------
    normZZ = ZZ * (dPar['binx'] * dPar['biny'] * eqCatMc.size())
    plot1 = ax.pcolormesh(XX, YY, normZZ, cmap=dPar['cmap'])
    cbar = plt.colorbar(
        plot1,
        orientation='horizontal',
        shrink=.5,
        aspect=20,
    )
Exemplo n.º 3
0
            #=================================================================================================
            catChild = EqCat()
            catParent= EqCat()
            catChild.copy(  ranCat)
            catParent.copy( ranCat)

            catChild.selEventsFromID(    dNND['aEqID_c'], repeats = True)
            catParent.selEventsFromID(   dNND['aEqID_p'], repeats = True)
            print( catChild.size(), catParent.size(), eqCatMc.size())
            a_R, a_T = clustering.rescaled_t_r( catChild, catParent, dConst, correct_co_located = True)

            a_Tbin = np.arange( dPar['Tmin'], dPar['Tmax']+2*dPar['binx'], dPar['binx'])
            a_Rbin = np.arange( dPar['Rmin'], dPar['Rmax']+2*dPar['biny'], dPar['biny'])
            a_log_T = np.log10( a_T)
            a_log_R = np.log10( a_R)
            XX, YY, ZZ = data_utils.density_2D( a_log_T, a_log_R, a_Tbin, a_Rbin, sigma = dPar['sigma'])

            plt.figure(2, figsize= (8,10))
            ax = plt.subplot(111)
            ax.set_title( 'Nearest Neighbor Pairs in R-T')
            #------------------------------------------------------------------------------
            normZZ = ZZ*( dPar['binx']*dPar['biny']*eqCatMc.size())
            plot1 = ax.pcolormesh( XX, YY, normZZ, cmap=dPar['cmap'])
            cbar  = plt.colorbar(plot1, orientation = 'horizontal', shrink = .5, aspect = 20,)
            #ax.plot(  np.log10( a_T), np.log10( a_R), 'wo', ms = 1.5, alpha = .2)
            # plot eta_0 to divide clustered and background mode
            ax.plot( [dPar['Tmin'], dPar['Tmax']],  -np.array([dPar['Tmin'], dPar['Tmax']])+a_Eta_0[i_Bs], '-', lw = 1.5, color = 'w' )
            ax.plot( [dPar['Tmin'], dPar['Tmax']],  -np.array([dPar['Tmin'], dPar['Tmax']])+a_Eta_0[i_Bs],'--', lw = 1.5, color = '.5' )
            #-----------------------labels and legends-------------------------------------------------------
            #cbar.set_label( 'Event Pair Density [#ev./dRdT]')
            cbar.set_label( 'Number of Event Pairs',labelpad=-40)