Exemplo n.º 1
0
    RAW_DATA_PATH = "G:/master_datafiles/raw_data/HC/"
    FILTERED_DATA_PATH = "session_hc_lw.pkl"
    nd = Net_data(
        # Program execution settings
        epochs=20,
        evaluate_training=False,
        slice_size=100,
        stride=100,
        y_step=100,
        win_size=100,
        search_radius=100,
        k_cross_validation=10,
        session_filter=Filter(func=hann, search_radius=100, step_size=100),
        valid_ratio=0.1,
        testing_ratio=0,
        time_shift_steps=1,
        early_stopping=False,
        model_path=MODEL_PATH,
        raw_data_path=RAW_DATA_PATH,
        filtered_data_path=FILTERED_DATA_PATH,
        metric="discrete",
        shuffle_data=True,
        shuffle_factor=1,
        lw_classifications=4,
        lw_normalize=True,
        lw_differentiate_false_licks=False,
        num_wells=5,
        initial_timeshift=-1,
        from_raw_data=False,
        dropout=0.2)

    # print_metric_details(MODEL_PATH,nd.initial_timeshift)
Exemplo n.º 2
0
from src.network_functions import run_network_process, initiate_network, run_network
from src.database_api_beta import Net_data
from src.model_data import c_dmf, chc_dmf, cpfc_dmf, hc_dmf, pfc_dmf

if __name__ == '__main__':

    model_data = hc_dmf
    nd = Net_data(initial_timeshift=0,
                  time_shift_iter=500,
                  time_shift_steps=1,
                  early_stopping=True,
                  model_path=model_data.model_path,
                  raw_data_path=model_data.raw_data_path,
                  filtered_data_path=model_data.filtered_data_path,
                  k_cross_validation=10,
                  valid_ratio=0.1,
                  naive_test=False,
                  from_raw_data=False,
                  epochs=20,
                  dropout=0.65,
                  behavior_component_filter=None,
                  filter_tetrodes=model_data.filter_tetrodes,
                  shuffle_factor=50,
                  switch_x_y=model_data.switch_x_y)
    session = initiate_network(nd)

    # Settings
    fontsize = 24
    plot_error_bars = False
    rc('font', **{'family': 'serif', 'serif': ['Palatino']})
    rc('text', usetex=True)
Exemplo n.º 3
0
    # filter_tetrodes = range(0, 13)

    # all neurons

    # MODEL_PATH = "G:/master_datafiles/trained_networks/c_naive/"
    # FILTERED_DATA_PATH = "slice_C.pkl"
    nd = Net_data(initial_timeshift=-2000,
                  time_shift_iter=500,
                  time_shift_steps=21,
                  early_stopping=False,
                  model_path=MODEL_PATH,
                  raw_data_path=RAW_DATA_PATH,
                  filtered_data_path=FILTERED_DATA_PATH,
                  k_cross_validation=1,
                  valid_ratio=0.1,
                  naive_test=True,
                  from_raw_data=True,
                  epochs=30,
                  dropout=0.65,
                  behavior_component_filter=None,
                  filter_tetrodes=filter_tetrodes,
                  shuffle_data=True,
                  shuffle_factor=10,
                  batch_size=50,
                  switch_x_y=combination_data_set)
    session = initiate_network(nd)
    run_network(nd, session)

    nd = Net_data(initial_timeshift=-2500,
                  time_shift_iter=-500,
                  time_shift_steps=20,
Exemplo n.º 4
0
    model_data = pfc_dmf
    # model_data = chc_dmf

    model_data.model_path = "G:/master_datafiles/trained_networks/pfc/"
    nd = Net_data(
        initial_timeshift=-10000,
        time_shift_iter=500,
        time_shift_steps=41,
        early_stopping=False,
        model_path=model_data.model_path,
        raw_data_path=model_data.raw_data_path,
        filtered_data_path=model_data.filtered_data_path,
        k_cross_validation=10,
        valid_ratio=0.1,
        naive_test=False,
        from_raw_data=False,
        epochs=15,
        dropout=0.65,
        # behavior_component_filter="rest",
        # behavior_component_filter="not at lickwell",
        # behavior_component_filter="correct trials",
        # behavior_component_filter="incorrect trials",
        # behavior_component_filter="move",
        filter_tetrodes=model_data.filter_tetrodes,
        shuffle_data=True,
        shuffle_factor=10,
        batch_size=50,
        switch_x_y=model_data.switch_x_y)
    session = initiate_network(nd)
    licks_timestamp = [lick.time for lick in session.licks]
    # session.plot(ax_filtered_spikes=session.filtered_spikes, ax_raw_spikes=session.spikes, ax_licks=licks_timestamp)
    # speedlist = [] # Speed test
import seaborn as sn
import pandas as pd
import matplotlib.pyplot as plt

if __name__ == '__main__':

    RAW_DATA_PATH = "G:/master_datafiles/raw_data/C"
    MODEL_PATH = "G:/master_datafiles/trained_networks/no_shuffle_test_3_different_dataset/"
    FILTERED_DATA_PATH = "slice_C.pkl"
    filter_tetrodes = None

    nd = Net_data(initial_timeshift=0,
                  epochs=1,
                  time_shift_iter=500,
                  time_shift_steps=1,
                  early_stopping=False,
                  model_path=MODEL_PATH,
                  raw_data_path=RAW_DATA_PATH,
                  filtered_data_path=FILTERED_DATA_PATH,
                  k_cross_validation=10,
                  from_raw_data=False)

    session = initiate_lickwell_network(nd)  # Initialize session

    # x and y are switched for this session and are restored to their original order to make them identical to the other sessions
    copy_pos_x = session.position_x
    session.position_x = session.position_y
    session.position_y = copy_pos_x
    for lick in session.licks:
        print(lick.lickwell)

    array = np.zeros((10, 10))
    # Prefrontal Cortex

    # MODEL_PATH = "G:/master_datafiles/trained_networks/filter_neurons_cpfc_100/"
    # FILTERED_DATA_PATH = "session_CPFC.pkl"
    # filter_tetrodes=range(0,13)

    # Combination

    # MODEL_PATH = "G:/master_datafiles/trained_networks/filter_neurons_c_100/"
    # FILTERED_DATA_PATH = "slice_C.pkl"
    # filter_tetrodes=None

    nd = Net_data(
        initial_timeshift=-5000,
        filter_tetrodes=filter_tetrodes,
        time_shift_iter=500,
        time_shift_steps=21,
        early_stopping=False,
        model_path=MODEL_PATH,
        raw_data_path=RAW_DATA_PATH,
        k_cross_validation = 1,
        naive_test=False,
        from_raw_data=True,
        epochs = 10,
        neurons_kept_factor=0.8
    )
    session = initiate_network(nd)
    copy_pos_x = session.position_x
    session.position_x = session.position_y
    session.position_y = copy_pos_x
    run_network(nd, session)
Exemplo n.º 7
0
    study="lickwell",
    nd=Net_data(
        network_shape=11,
        # Program execution settings
        epochs=10,
        evaluate_training=False,
        slice_size=200,
        stride=200,
        y_step=200,
        win_size=200,
        search_radius=200,
        k_cross_validation=10,
        session_filter=Filter(func=hann, search_radius=200, step_size=200),
        valid_ratio=0.1,
        testing_ratio=0,
        time_shift_steps=1,
        early_stopping=False,
        model_path=
        "G:/master_datafiles/trained_networks/MLP_PFC_lickwell_example/",
        raw_data_path="G:/master_datafiles/raw_data/PFC/",
        filtered_data_path="session_hc_lw.pkl",
        metric="discrete",
        shuffle_data=True,
        shuffle_factor=1,
        lw_classifications=5,
        lw_normalize=True,
        lw_differentiate_false_licks=False,
        num_wells=5,
        initial_timeshift=1,
    ))
lickwell_experiment_pfc_memory = Experiment(
Exemplo n.º 8
0
def guiRun_network():
    nd = Net_data(
        model_path=tbx_model_path.value,
        raw_data_path=tbx_raw_data_path.value,
        dropout=float(tbx_dropout.value),
        filtered_data_path=tbx_filtered_data_path.value,
        stride=int(tbx_stride.value),
        epochs=int(tbx_epochs.value),
        from_raw_data=bool(cbo_from_raw_data.value == "True"),
        evaluate_training=bool(cbo_evaluate_training.value == "True"),
        session_filter=Filter(func=hann,
                              search_radius=int(tbx_search_radius.value),
                              step_size=int(tbx_step_size.value)),
        time_shift_steps=int(tbx_time_shift_steps.value),
        shuffle_data=bool(cbo_shuffle_data.value == "True"),
        shuffle_factor=int(tbx_shuffle_factor.value),
        time_shift_iter=int(tbx_time_shift_iter.value),
        initial_timeshift=int(tbx_initial_timeshift.value),
        metric_iter=int(tbx_metric_iter.value),
        batch_size=int(tbx_batch_size.value),
        slice_size=int(tbx_slice_size.value),
        x_max=int(tbx_x_max.value),
        y_max=int(tbx_y_max.value),
        x_min=int(tbx_x_min.value),
        y_min=int(tbx_y_min.value),
        x_step=int(tbx_x_step.value),
        y_step=int(tbx_y_step.value),
        early_stopping=bool(cbo_early_stopping.value == "True"),
        naive_test=bool(cbo_naive_test.value == "True"),
        valid_ratio=float(tbx_valid_ratio.value),
        testing_ratio=float(tbx_testing_ratio.value),
        k_cross_validation=int(tbx_k_cross_validation.value),
        load_model=bool(cbo_load_model.value == "True"),
        train_model=bool(cbo_train_model.value == "True"),
        keep_neurons=-1,
        neurons_kept_factor=float(tbx_neurons_kept_factor.value),
        lw_classifications=None
        if not tbx_lw_classifications.value.isnumeric() else int(
            tbx_lw_classifications.value),
        lw_normalize=bool(cboLw_normalize.value == "True"),
        lw_differentiate_false_licks=bool(
            cbo_lw_differentiate_false_licks.value == "True"),
        num_wells=int(tbx_num_wells.value),
        metric=tbx_metric.value,
        valid_licks=None
        if tbx_valid_licks.value == 'None' else tbx_valid_licks.value,
        filter_tetrodes=None
        if tbx_filter_tetrodes.value == 'None' else tbx_filter_tetrodes.value,
        phases=None if tbx_phases.value == 'None' else tbx_phases.value,
        phase_change_ids=None if tbx_phase_change_ids.value == 'None' else
        tbx_phase_change_ids.value,
        number_of_bins=int(tbx_number_of_bins.value),
        start_time_by_lick_id=None
        if not tbx_start_time_by_lick_id.value.isnumeric() else int(
            tbx_start_time_by_lick_id.value),
        behavior_component_filter=None if cbo_behavior_component.value
        == 'None' else cbo_behavior_component.value)
    if tbx_metric.value == "map":
        session = initiate_network(nd)
        run_network(nd, session)
    else:
        session = initiate_lickwell_network(nd)  # Initialize session
        X, y, nd, session, = lickwells_io(session,
                                          nd,
                                          _excluded_wells=[1],
                                          shift=nd.initial_timeshift,
                                          target_is_phase=False,
                                          lickstart=0,
                                          lickstop=5000)

    pass
Exemplo n.º 9
0
    filter_tetrodes = range(0, 13)

    # all neurons

    # MODEL_PATH = "G:/master_datafiles/trained_networks/no_shuffle_test_3_different_dataset/"
    # FILTERED_DATA_PATH = "slice_C.pkl"
    # filter_tetrodes=None

    nd = Net_data(initial_timeshift=-5000,
                  time_shift_iter=5000,
                  time_shift_steps=3,
                  valid_ratio=1,
                  early_stopping=True,
                  model_path=MODEL_PATH,
                  raw_data_path=RAW_DATA_PATH,
                  filtered_data_path=FILTERED_DATA_PATH,
                  k_cross_validation=1,
                  naive_test=False,
                  load_model=True,
                  from_raw_data=True,
                  epochs=1,
                  dropout=0.65,
                  train_model=False)
    session = initiate_network(nd)
    if combination_data_set is True:
        copy_pos_x = session.position_x
        session.position_x = session.position_y
        session.position_y = copy_pos_x

    # pick
    run_network(nd, session)
Exemplo n.º 10
0
def filter_well(x,y,well):
    


if __name__ == '__main__':

    # prefrontal cortex

    # MODEL_PATH = "G:/master_datafiles/trained_networks/MLP_PFC_2018-11-06_1000_200_100_dmf/"
    # RAW_DATA_PATH = "G:/master_datafiles/raw_data/2018-04-09_14-39-52/"
    # FILTERED_DATA_PATH = "G:/master_datafiles/filtered_data/neocortex_hann_win_size_20.pkl"

    # hippocampus

    MODEL_PATH = "G:/master_datafiles/trained_networks/MLP_HC_2018-11-11_1000_200_100_dmf/"
    RAW_DATA_PATH = "G:/master_datafiles/raw_data/2018-05-16_17-13-37/"
    FILTERED_DATA_PATH = "G:/master_datafiles/filtered_data/hippocampus_hann_win_size_25_09-5_7.pkl"
    NEURONS_KEPT_FACTOR = 1

    WIN_SIZE = 20
    SEARCH_RADIUS = WIN_SIZE * 2
    session_filter = Filter(func=hann, search_radius=SEARCH_RADIUS, step_size=WIN_SIZE)

    nd = Net_data(

        # Program execution settings

        EPOCHS=20,
        SEARCH_RADIUS=SEARCH_RADIUS,
        WIN_SIZE=WIN_SIZE,
        INITIAL_TIMESHIFT=0,
        TIME_SHIFT_ITER=200,
        TIME_SHIFT_STEPS=1,
        METRIC_ITER=1,  # after how many epochs network is validated <---
        SHUFFLE_DATA=True,  # whether to randomly shuffle the data in big slices
        SHUFFLE_FACTOR=500,
        EARLY_STOPPING=True,
        NAIVE_TEST=False,
        K_CROSS_VALIDATION=1,
        TRAIN_MODEL=True,

        # Input data parameters

        SLICE_SIZE=1000,
        Y_SLICE_SIZE=200,
        STRIDE=100,
        BATCH_SIZE=50,
        VALID_RATIO=0.1,
        X_MAX=240,
        Y_MAX=190,
        X_MIN=0,
        Y_MIN=100,
        X_STEP=3,
        y_step=3,
        LOAD_MODEL= False,
        session_filter=session_filter,
        MODEL_PATH=MODEL_PATH,
        r2_scores_train=[],
        r2_scores_valid=[],
        acc_scores_train=[],
        acc_scores_valid=[],
        avg_scores_train=[],
        avg_scores_valid=[],
        RAW_DATA_PATH=RAW_DATA_PATH,
    )
    X,y,session = initiate_network(nd)
    run_network(X,y,nd,session)