Exemplo n.º 1
0
def test_sub_anttena(row, colomn, length):
    center_x = -57.75 + (row * 2 + length - 1) / 2.0 * 16.5
    center_y = -9.5 - (colomn * 2 + length - 1) / 2.0 * 16.5
    subAntenna = SquareArray(length, center_y, center_x)
    print(subAntenna.antenna_cor)
    subAntennaIndex = numpy.zeros(shape=length * length)
    for i in range(length * length):
        subAntennaIndex[i] = (i // length + colomn) * 8 + i % length + row
    offset = numpy.loadtxt(r'offsetfromstatic.txt')
    offset = torch.Tensor(offset).view(1, -1)
    trainPath = r'D:\dataset\data2'
    trainDataset = FileDataSet.FileDataset(trainPath + r'\traindata.txt',
                                           trainPath + r'\trainlabel.txt')
    inputs, labels = trainDataset[:]
    inputs = inputs[:, subAntennaIndex]
    offset = offset[:, subAntennaIndex]
    inputs = inputs - offset
    labels = labels / 10

    inputs = inputs.view(-1, 9, 1)
    w = 360
    h = 90
    Al = torch.linspace(0, w - 1, w).view(1, w) / 180.0 * numpy.pi
    Al = torch.matmul(torch.ones(h, 1), Al).view(1, 1, w * h)
    Be = torch.linspace(0, h - 1, h).view(h, 1) / 180.0 * numpy.pi
    Be = torch.matmul(
        Be,
        torch.ones(1, w),
    ).view(1, 1, w * h)

    altruth = numpy.arctan2(labels[:, 1].numpy() - center_y,
                            labels[:, 0].numpy() - center_x) / numpy.pi * 180
    betruth = numpy.arcsin((labels[:, 2].numpy() + 2) / numpy.sqrt(
        (labels[:, 1].numpy() - center_y) * (labels[:, 1].numpy() - center_y) +
        (labels[:, 0].numpy() - center_x) * (labels[:, 0].numpy() - center_x) +
        (labels[:, 2].numpy() + 2) *
        (labels[:, 2].numpy() + 2))) / numpy.pi * 180
    index = 10
    print(betruth[index])
    print(altruth[index])

    #plt.imshow(p0[index,:].view(h,w))
    for i in range(labels.shape[0]):
        index = i
        a = subAntenna.p0(Al, Be, inputs[index, :, :].view(1, 9,
                                                           1)).view(h,
                                                                    w).numpy()
        print(
            str(betruth[index]) + " " + str(altruth[index]) + " " +
            str(numpy.unravel_index(a.argmax(), a.shape)[0]) + " " +
            str(numpy.unravel_index(a.argmax(), a.shape)[1]))
Exemplo n.º 2
0
def cal_offset(refanttena, trainPath):
    center_x = -57.54 + (0 * 2 + 8 - 1) / 2.0 * 16.44
    center_y = 57.54 - (0 * 2 + 8 - 1) / 2.0 * 16.44
    test = SquareArray(8, center_y, center_x)

    trainDataset = FileDataSet.FileDataset(trainPath + r'\traindata.txt',
                                           trainPath + r'\trainlabel2.txt')
    inputs, labels = trainDataset[:]
    # plt.plot(numpy.mod(inputs.numpy()[:, 24] - inputs.numpy()[:, 8], numpy.pi * 2))
    # plt.show()
    d = test.theta_theory_XYZ(
        torch.Tensor(labels[:, 0] * 100).view(-1, 1),
        torch.Tensor(labels[:, 1] * 100).view(-1, 1),
        torch.Tensor(labels[:, 2] * 100).view(-1, 1))
    print(d.shape)
    print(inputs.shape)

    # plt.plot(inputs.numpy()[:, 9])
    # plt.figure()
    #
    # plt.plot(labels.cpu().numpy()[0::1, 0])
    # plt.plot(labels.cpu().numpy()[0::1, 1])
    # plt.plot(
    #     numpy.mod(inputs.numpy()[:, 1] - inputs.numpy()[:, 8], numpy.pi * 2))
    # plt.plot(
    #     numpy.mod(inputs.numpy()[:, 0] - inputs.numpy()[:, 8], numpy.pi * 2))
    # plt.plot(numpy.mod((d.numpy()[:, 0] - d.numpy()[:, 8]), numpy.pi * 2))
    # plt.show()

    offset = numpy.zeros(shape=(64, 1))
    for i in range(64):
        offset[i, 0] = numpy.median(
            numpy.mod((inputs.numpy()[:, i] - inputs.numpy()[:, refanttena] -
                       (d.numpy()[:, i] - d.numpy()[:, refanttena])),
                      numpy.pi * 2))
    # plt.plot(offset)
    # plt.show()
    numpy.savetxt('offsetfromstatic.txt', offset)
Exemplo n.º 3
0
def cal_offset():
    center_x = -57.75 + (0 * 2 + 8 - 1) / 2.0 * 16.5
    center_y = -9.5 - (0 * 2 + 8 - 1) / 2.0 * 16.5
    test = SquareArray(8, center_y, center_x)
    trainPath = r'D:\dataset\datastatic'
    trainDataset = FileDataSet.FileDataset(trainPath + r'\traindata.txt',
                                           trainPath + r'\trainlabel.txt')
    inputs, labels = trainDataset[:]
    d = test.theta_theory_XYZ(
        torch.Tensor(labels[:, 0] / 10).view(-1, 1),
        torch.Tensor(labels[:, 1] / 10).view(-1, 1),
        torch.Tensor(labels[:, 2] / 10).view(-1, 1))
    print(d.shape)
    print(inputs.shape)

    offset = numpy.zeros(shape=(64, 1))
    for i in range(64):
        offset[i, 0] = numpy.median(
            numpy.mod(
                (inputs.numpy()[:, i] - (d.numpy()[:, i] - d.numpy()[:, 0])),
                numpy.pi * 2))
    plt.plot(offset)
    plt.show()
    numpy.savetxt('offsetfromstatic.txt', offset)
Exemplo n.º 4
0
class MyLoss(nn.Module):
    def __init__(self):
        super(MyLoss, self).__init__()
        self.cro = nn.CrossEntropyLoss()

    def forward(self, pred, truth):
        return self.cro(pred[:, :pm.OutputShape[0]],
                        truth[:, 0, 0].cuda()) + self.cro(
                            pred[:, pm.OutputShape[0]:], truth[:, 0, 1].cuda())


workMode = pm.learnMode
dataMode = pm.dataMode
testPath = r'D:\Documents\OptiTrack\7-2-1'
fileDataset = FileDataSet.FileDataset(testPath + r'\traindata.txt',
                                      testPath + r'\trainlabel2.txt')
#fileDataset.Uniform()
#fileDataset.make_more(2,0.01)
trainloader = torch.utils.data.DataLoader(fileDataset,
                                          batch_size=10,
                                          shuffle=True,
                                          num_workers=0)

model = CHAModule.MyNet1(64, pm.picWidth)
#modelAE = torch.load('c.core')
#core = CHAModule.MyNet3()

#criterion = nn.MSELoss()
criterion = nn.CrossEntropyLoss(size_average=True)
w = 64
h = 48
Exemplo n.º 5
0
import torch
from src.core import CenterCamera, Parameters as pm, AntennaArray as aa
import torchvision
import math

from src.dataprocess import FileDataSet

TestMoade = pm.LearningMode.Regression
if __name__ == '__main__':
    #import TrainTestbed
    model = torch.load('a.core')
    model.eval()
    testPath = r'E:\DataTest'
    testDataset = FileDataSet.FileDataset(testPath + r'\testdata.txt',
                                          testPath + r'\testlabel.txt')
    testloader = torch.utils.data.DataLoader(testDataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=0)
    inputs, labels = testDataset[:]
    square_array = aa.SquareArray()
    cam = CenterCamera.Camera()
    w = int(cam.s[0, 0])
    h = int(cam.s[1, 0])
    pixalX = torch.linspace(0, w - 1, w).view(1, w)
    pixalX = torch.matmul(torch.ones(h, 1), pixalX).view(1, w * h)
    pixalY = torch.linspace(0, h - 1, h).view(h, 1)
    pixalY = torch.matmul(
        pixalY,
        torch.ones(1, w),
    ).view(1, w * h)
Exemplo n.º 6
0
import torch
from torch.autograd import Variable
import matplotlib.pyplot as plt
from src.core import Parameters as pm

from src.dataprocess import FileDataSet

TestMoade = pm.LearningMode.Regression
if __name__ == '__main__':
    #import TrainTestbed
    model = torch.load('b.core')
    model.eval()
    testPath = r'E:\Data7'
    testDataset = FileDataSet.FileDatasetRNN(testPath + r'\traindata.txt',
                                             testPath + r'\trainlabel.txt', 10)
    testloader = torch.utils.data.DataLoader(testDataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=0)
    for i, data in enumerate(testloader, 0):
        if i % 100 != 0:
            continue
        inputs, labels = data
        if torch.cuda.is_available():
            inputs = inputs.cuda()
            labels = labels.cuda()
        outputs = model(Variable(inputs))
        a = outputs.view(-1, 3072).cpu().detach().numpy()
        b = labels.cpu().numpy()
        print(b)
        #plt.plot(b / 10)
Exemplo n.º 7
0
def test_sub_anttena_Pixal(row, colomn, length, trainPath):
    center_x = -57.54 + (colomn * 2 + length - 1) / 2.0 * 16.44
    center_y = 57.54 - (row * 2 + length - 1) / 2.0 * 16.44
    subAntenna = SquareArray(length, center_y, center_x)
    print(subAntenna.antenna_cor)
    subAntennaIndex = numpy.zeros(shape=length * length)
    for i in range(length * length):
        subAntennaIndex[i] = (i // length + colomn) * 8 + i % length + row
    offset = numpy.loadtxt(r'offsetfromstatic.txt')
    offset = torch.Tensor(offset).view(1, -1)
    trainDataset = FileDataSet.FileDataset(trainPath + r'\traindata.txt',
                                           trainPath + r'\trainlabel2.txt')
    inputs, labels = trainDataset[:]
    inputs = inputs[:, subAntennaIndex]
    offset = offset[:, subAntennaIndex]
    inputs = inputs - offset
    labels = labels * 100

    inputs = inputs.view(-1, length * length, 1)
    w = 600
    h = 600
    Al = torch.linspace(0, w - 1, w).view(1, w)
    Al = torch.matmul(torch.ones(h, 1), Al).view(1, 1, w * h)
    Be = torch.linspace(0, h - 1, h).view(h, 1)
    Be = torch.matmul(
        Be,
        torch.ones(1, w),
    ).view(1, 1, w * h)

    camera = CenterCamera.Camera
    Al, Be = camera.getAlBefromPixal(camera, Al, Be)
    altruth = numpy.arctan2(labels[:, 1].numpy() - center_y,
                            labels[:, 0].numpy() - center_x) / numpy.pi * 180
    betruth = numpy.arcsin((labels[:, 2].numpy() + 2) / numpy.sqrt(
        (labels[:, 1].numpy() - center_y) * (labels[:, 1].numpy() - center_y) +
        (labels[:, 0].numpy() - center_x) * (labels[:, 0].numpy() - center_x) +
        (labels[:, 2].numpy() + 2) *
        (labels[:, 2].numpy() + 2))) / numpy.pi * 180
    index = 10
    print(betruth[index])
    print(altruth[index])
    xtruth, ytruth = camera.getPixalFromAlBe(camera, altruth, betruth)

    b = list()
    #plt.imshow(p0[index,:].view(h,w))
    imagepath = trainPath + r'\AOAPix\aoamap' + str(row) + '-' + str(
        colomn) + '-' + str(length)
    folder = os.path.exists(imagepath)

    if not folder:  # 判断是否存在文件夹如果不存在则创建为文件夹
        os.makedirs(imagepath)

    for i in range(0, labels.shape[0], 10):
        index = i
        a = subAntenna.p0(Al, Be, inputs[i, :, :].view(1, length * length,
                                                       1)).view(h, w)
        torchvision.utils.save_image(
            a, imagepath + '\\' + str(int(i / 10)) + '.jpg')
        a = a.numpy()
        b.append([
            xtruth[index], ytruth[index],
            numpy.unravel_index(a.argmax(), a.shape)[1],
            numpy.unravel_index(a.argmax(), a.shape)[0]
        ])
    #plt.show()
    b = numpy.array(b)
    numpy.savetxt(imagepath + r'\b.txt', numpy.array(b))
    numpy.savetxt(imagepath + r'\label.txt', labels[::10, ].numpy())
Exemplo n.º 8
0
import torch
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
from src.core import Parameters as pm

from src.dataprocess import FileDataSet

TestMoade = pm.LearningMode.Regression
if __name__ == '__main__':
    #import TrainTestbed
    # model = torch.load('c.core')
    #model.eval()
    trainPath = r'D:\dataset\data3'
    trainDataset = FileDataSet.FileDataset(trainPath + r'\traindata.txt',
                                           trainPath + r'\trainlabel.txt')
    trainloader = torch.utils.data.DataLoader(trainDataset,
                                              batch_size=1,
                                              shuffle=False,
                                              num_workers=0)
    testPath = r'D:\dataset\data1'
    testDataset = FileDataSet.FileDataset(testPath + r'\traindata.txt',
                                          testPath + r'\trainlabel.txt')
    testloader = torch.utils.data.DataLoader(testDataset,
                                             batch_size=1,
                                             shuffle=False,
                                             num_workers=0)

    inputs, labels = testDataset[:]
    inputs2, labels2 = trainDataset[:]
    #inputs = model(Variable(inputs.cuda())).detach().cpu()
Exemplo n.º 9
0
    def TestOneTag(epc):
        model = torch.load('a.core')
        model.eval()
        testPath = r'E:\Data20'
        testDataset = FileDataSet.FileDataset(
            testPath + r'\traindata' + str(epc) + '.txt',
            testPath + r'\trainlabel' + str(epc) + '.txt')
        testloader = torch.utils.data.DataLoader(testDataset,
                                                 batch_size=1,
                                                 shuffle=False,
                                                 num_workers=0)
        criterion = nn.MSELoss()
        modelAE = torch.load('c.core')

        # randindex = torch.linspace(1,100,100)#np.random.randint(0, 80, size=[10])
        # for i in randindex:
        #     inputs, labels = testDataset[int(i)]
        #     labels=labels.view(1,1,2)
        #     one_hot = torch.zeros(1, 640).scatter_(1, labels.data[:,:,0],1)
        #     inputs, labels = Variable(inputs), Variable(one_hot.view(-1, 640))
        #     if torch.cuda.is_available():
        #         inputs = inputs.cuda()
        #         labels = labels.cuda()
        #     outputs = core(Variable(inputs ))
        #     scal = (torch.Tensor([640, 480]).view(1, 2)).cuda()
        #
        #     #print(outputs.data * scal)
        #     print(outputs.data)
        #     print(labels)
        #     print('========')

        # inputs, labels = testDataset[:]
        # outputs=core(Variable(inputs.cuda()))
        # #scal = (torch.Tensor([640, 480]).view(1, 2)).cuda()
        # #np.savetxt('a.txt', (outputs.data*scal).cpu().numpy(), fmt='%.6f')
        # np.savetxt('a.txt', (outputs.data).cpu().numpy(), fmt='%.6f')
        # for epoch in range(1):  # loop over the dataset multiple times
        #
        #     running_loss = 0.0
        #     for i, data in enumerate(testloader, 0):
        #         # get the inputs
        #         inputs, labels = data
        #         one_hot = torch.zeros(labels.size(0), 640).scatter_(1, labels.data[:, :, 0], 1)
        #         inputs, labels = Variable(inputs), Variable(one_hot.view(-1, 1, 640))
        #
        #         # wrap them in Variable
        #         #inputs, labels = Variable(inputs ), Variable(labels /torch.Tensor([640,480]).view(1,2))
        #         if torch.cuda.is_available():
        #             inputs = inputs.cuda()
        #             labels = labels.cuda()
        #
        #
        #         outputs = core(inputs)
        #         loss = criterion(outputs, labels)
        #
        #
        #         # print statistics
        #         running_loss += loss.data
        #         if i % 20 == 19:  # print every 2000 mini-batches
        #             print('[%d, %5d] loss: %.5f' %
        #                   (epoch + 1, i + 1, running_loss / 20))
        #             running_loss = 0.0
        #             # break
        #
        # print('Finished Training')
        if TestMoade == pm.LearningMode.Classification1LabelHeatMap:
            inputs, labels = testDataset[:]
            if torch.cuda.is_available():
                inputs = inputs.cuda()
                labels = labels.cuda()
            # outputs = core(Variable(modelAE.encoder(inputs)))
            outputs = model(Variable((inputs)))
            a = outputs.cpu().detach().numpy().transpose()
            # x = F.softmax(torch.Tensor(a[:pm.OutputShape[0],:]),0)
            # values, indices = torch.max(x, 0)
            # y = F.softmax(torch.Tensor(a[pm.OutputShape[0]:, :]), 0)
            # values2, indices2 = torch.max(y, 0)
            # index =torch.cat((indices.view(-1,1),indices2.view(-1,1)),1)
            # np.savetxt('a.txt',index.numpy().astype(int))
            # np.savetxt('b.txt', x.numpy())
            b = labels.cpu().numpy()[0::10, 0]
            plt.plot(b / 10)
            # plt.figure()
            # for i in range(100):
            #     plt.imshow(a[:, i * 10].reshape(48, 64))
            #     plt.show()
            # plt.imshow(a[:, 1].reshape(48, 64))
            plt.imshow(np.sum(a[:, 0::10].reshape(48, 64, -1), 0))
            temp = np.unravel_index(np.argmax(a[:, 0::10], 0), (48, 64))
            plt.plot(temp[1])
            plt.figure()
            b = labels.cpu().numpy()[0::10, 1]
            plt.plot(b / 10)
            # plt.figure()
            # for i in range(100):
            #     plt.imshow(a[:, i * 10].reshape(48, 64))
            #     plt.show()
            # plt.imshow(a[:, 1].reshape(48, 64))
            plt.imshow(np.sum(a[:, 0::10].reshape(48, 64, -1), 1))
            temp = np.unravel_index(np.argmax(a[:, 0::10], 0), (48, 64))
            plt.plot(temp[0])
            plt.figure()
            r1 = labels.cpu().numpy()[0::10, 1] / 10 - temp[0]
            r2 = labels.cpu().numpy()[0::10, 0] / 10 - temp[1]
            plt.hist(np.abs(r1), 100)
            plt.figure()
            plt.hist(np.abs(r2), 100)
            plt.figure()
            plt.hist(np.abs(np.sqrt(r1 * r1 + r2 * r2)), 100)
            plt.figure()
            plt.plot(np.sqrt(r1 * r1 + r2 * r2))
            print(np.mean(np.abs(r1)))
            print(np.mean(np.abs(r2)))

            temp = np.unravel_index(np.argmax(a[:, :], 0), (48, 64))
            temp2 = np.hstack(
                (temp[1].reshape(-1, 1) * 10, temp[0].reshape(-1, 1) * 10))
            np.savetxt(testPath + r'\modelResult' + str(epc) + '.txt', temp2)
            # for i, data in enumerate(testloader, 0):
            #     if i % 100 != 0:
            #         continue
            #     inputs, labels = data
            #     if torch.cuda.is_available():
            #         inputs = inputs.cuda()
            #         labels = labels.cuda()
            #     outputs = core(Variable(inputs))
            #     a = outputs.view(-1, 3072).cpu().detach().numpy()
            #     b = labels.cpu().numpy()
            #     print(b)
            #     plt.imshow(a[:, :].reshape(48, 64))
            #     plt.show()
        elif TestMoade == pm.LearningMode.Regression:
            inputs, labels = testDataset[:]
            if torch.cuda.is_available():
                inputs = inputs.cuda()
                labels = labels.cuda()
            outputs = model(Variable((inputs)))
            b = labels.cpu().numpy()[:, 0]
            plt.figure()
            plt.plot(b)
            plt.plot(outputs.detach().cpu().numpy()[:, 0] * 640)
            plt.figure()
            b = labels.cpu().numpy()[:, 1]
            plt.plot(b)
            plt.plot((outputs.detach().cpu().numpy()[:, 1]) * 240 + 240)

            temp2 = np.hstack(
                (outputs.detach().cpu().numpy()[:, 0].reshape(-1, 1) * 640,
                 outputs.detach().cpu().numpy()[:, 1].reshape(-1, 1) * 240 +
                 240))
            np.savetxt(testPath + r'\modelResult' + str(epc) + '.txt', temp2)
        elif TestMoade == pm.LearningMode.Classification2LabelsOneHot:
            inputs, labels = testDataset[:]
            if torch.cuda.is_available():
                inputs = inputs.cuda()
                labels = labels.cuda()
            outputs = model(Variable(inputs))
            a = outputs.cpu().detach().numpy().transpose()
            x = F.softmax(torch.Tensor(a[pm.OutputShape[0]:, :]), 0)
            # values, indices = torch.max(x, 0)
            # y = F.softmax(torch.Tensor(a[pm.OutputShape[0]:, :]), 0)
            plt.imshow(x * x)
            b = labels.cpu().numpy()[:, 1]
            plt.plot(b)
            aa = np.argmax(x[:, 0::1], 0)
            plt.plot(aa.numpy())
            plt.show()