Exemplo n.º 1
0
def eval_net():
    '''eval net'''
    if config.dataset == 'MR':
        instance = MovieReview(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
    elif config.dataset == 'SUBJ':
        instance = Subjectivity(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
    elif config.dataset == 'SST2':
        instance = SST2(root_dir=config.data_path, maxlen=config.word_len, split=0.9)
    device_target = config.device_target
    context.set_context(mode=context.GRAPH_MODE, device_target=config.device_target)
    if device_target == "Ascend":
        context.set_context(device_id=get_device_id())
    dataset = instance.create_test_dataset(batch_size=config.batch_size)
    loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
    net = TextCNN(vocab_len=instance.get_dict_len(), word_len=config.word_len,
                  num_classes=config.num_classes, vec_length=config.vec_length)
    opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate=0.001,
                  weight_decay=float(config.weight_decay))

    param_dict = load_checkpoint(config.checkpoint_file_path)
    print("load checkpoint from [{}].".format(config.checkpoint_file_path))

    load_param_into_net(net, param_dict)
    net.set_train(False)
    model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc': Accuracy()})

    acc = model.eval(dataset)
    print("accuracy: ", acc)
Exemplo n.º 2
0
                    help="device target")
parser.add_argument('--dataset', type=str, default='MR', choices=['MR', 'SUBJ', 'SST2'],
                    help='dataset name.')

args = parser.parse_args()

context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)

if __name__ == '__main__':

    if args.dataset == 'MR':
        cfg = cfg_mr
        instance = MovieReview(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
    elif args.dataset == 'SUBJ':
        cfg = cfg_subj
        instance = Subjectivity(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
    elif args.dataset == 'SST2':
        cfg = cfg_sst2
        instance = SST2(root_dir=cfg.data_path, maxlen=cfg.word_len, split=0.9)
    else:
        raise ValueError("dataset is not support.")

    net = TextCNN(vocab_len=instance.get_dict_len(), word_len=cfg.word_len,
                  num_classes=cfg.num_classes, vec_length=cfg.vec_length)

    param_dict = load_checkpoint(args.ckpt_file)
    load_param_into_net(net, param_dict)

    input_arr = Tensor(np.ones([cfg.batch_size, cfg.word_len], np.int32))
    export(net, input_arr, file_name=args.file_name, file_format=args.file_format)
Exemplo n.º 3
0
def train_net():
    '''train net'''
    # set context
    context.set_context(mode=context.GRAPH_MODE,
                        device_target=config.device_target)
    context.set_context(device_id=get_device_id())
    if config.dataset == 'MR':
        instance = MovieReview(root_dir=config.data_path,
                               maxlen=config.word_len,
                               split=0.9)
    elif config.dataset == 'SUBJ':
        instance = Subjectivity(root_dir=config.data_path,
                                maxlen=config.word_len,
                                split=0.9)
    elif config.dataset == 'SST2':
        instance = SST2(root_dir=config.data_path,
                        maxlen=config.word_len,
                        split=0.9)

    dataset = instance.create_train_dataset(batch_size=config.batch_size,
                                            epoch_size=config.epoch_size)
    batch_num = dataset.get_dataset_size()

    base_lr = float(config.base_lr)
    learning_rate = []
    warm_up = [
        base_lr / math.floor(config.epoch_size / 5) * (i + 1)
        for _ in range(batch_num)
        for i in range(math.floor(config.epoch_size / 5))
    ]
    shrink = [
        base_lr / (16 * (i + 1)) for _ in range(batch_num)
        for i in range(math.floor(config.epoch_size * 3 / 5))
    ]
    normal_run = [
        base_lr for _ in range(batch_num)
        for i in range(config.epoch_size - math.floor(config.epoch_size / 5) -
                       math.floor(config.epoch_size * 2 / 5))
    ]
    learning_rate = learning_rate + warm_up + normal_run + shrink

    net = TextCNN(vocab_len=instance.get_dict_len(),
                  word_len=config.word_len,
                  num_classes=config.num_classes,
                  vec_length=config.vec_length)
    # Continue training if set pre_trained to be True
    if config.pre_trained:
        param_dict = load_checkpoint(config.checkpoint_path)
        load_param_into_net(net, param_dict)

    opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), \
                                    learning_rate=learning_rate, weight_decay=float(config.weight_decay))
    loss = SoftmaxCrossEntropyExpand(sparse=True)

    model = Model(net,
                  loss_fn=loss,
                  optimizer=opt,
                  metrics={'acc': Accuracy()})

    config_ck = CheckpointConfig(
        save_checkpoint_steps=int(config.epoch_size * batch_num / 2),
        keep_checkpoint_max=config.keep_checkpoint_max)
    time_cb = TimeMonitor(data_size=batch_num)
    ckpt_save_dir = os.path.join(config.output_path, config.checkpoint_path)
    ckpoint_cb = ModelCheckpoint(prefix="train_textcnn",
                                 directory=ckpt_save_dir,
                                 config=config_ck)
    loss_cb = LossMonitor()
    model.train(config.epoch_size,
                dataset,
                callbacks=[time_cb, ckpoint_cb, loss_cb])
    print("train success")