class TestFilter(unittest.TestCase):
    def setup(self):
        self.finder = Filter()

    # Negative Testing 1
    def test_data_empty(self):
        self.finder = Filter()
        data = self.finder.size()
        self.assertEqual(data, 0)

    # Positive Testing 1
    def test_data_exist(self):
        self.finder = Filter(['a', 'b', 'a'])
        data = self.finder.size()
        self.assertNotEqual(data, 0)

    # Negative Testing 1
    def test_process_data_empty(self):
        self.finder = Filter()
        data = self.finder.process()
        self.assertListEqual(data, [])

    # Positive Testing 1
    def test_process_data_singlelist(self):
        self.finder = Filter(['a', 'b', 'a'])
        data = self.finder.process()
        self.assertNotEqual(data, 0)

    # Positive Testing 2
    def test_process_data_multipleList(self):
        self.finder = Filter(['a', 'b', 'a', 'ab', 'cd', 'abc', 'xyz'])
        data = self.finder.process()
        self.assertNotEqual(data, 0)
Exemplo n.º 2
0
    def _getNewYEstimateAtCurrentResolutionLevel(self, X, radiograph,
                                                 currentTooth,
                                                 currentResolutionLevel,
                                                 filter_settings):
        # Pre process image
        img = Filter.process_image(
            deepcopy(radiograph.getImage(deepCopy=True)), filter_settings[0],
            filter_settings[1], filter_settings[2])
        derivate_img = Filter.laplacian(img)
        # derivate_img = Filter.histogramEql(Filter.process_image(deepcopy(img), filter_settings[0], filter_settings[1], filter_settings[2]))
        # derivate_img = Filter.process_image(deepcopy(derivate_img), median_kernel=3, bilateral_kernel=5)
        #cv2.imshow("Test", derivate_img)
        #cv2.waitKey(0)

        # Get the correct model
        multiResModel = self.completeStatisticalModel.getGrayLevelMultiResolutionModel(
            deepCopy=True)
        singleResModel = multiResModel.getGrayLevelSignleResModelByResolutionLevelIndex(
            currentResolutionLevel)
        toothModel = singleResModel.getGrayLevelToothModelByToothIndex(
            currentTooth, currentResolutionLevel)

        # Init X and Y
        Y = np.zeros((40, 2))
        X = X.getLandmarks()

        counter = 0
        for i in range(40):
            Y[i], is_close = self._getYPointEstimateFromGivenModelPoint(
                toothModel, i, X, currentResolutionLevel, currentTooth, img,
                derivate_img)
            if is_close:
                counter += 1

        return Y, counter / 40
Exemplo n.º 3
0
 def filterTest(self):
     radiograph = self.dataHandler.getRadiographs(deepCopy=True)[0]
     blurred_img = Filter.process_image(deepcopy(radiograph.getImage()),
                                        median_kernel=3,
                                        bilateral_kernel=10)
     cv2.imshow("BlurredImage", blurred_img)
     clahe = cv2.equalizeHist(blurred_img)
     cv2.imshow("Clahe", clahe)
     img_1 = Filter.laplacian(blurred_img)
     cv2.imshow("Img1", img_1)
Exemplo n.º 4
0
    def _find_poses(self, image):
        '''
        Find initial poses for the image.
        :param image: image instance
        :return: array in format [(np.array(x position, y position), scale, rotation), ...]
        '''
        self.top_jaw_line, self.lower_jaw_line = self._find_jaw_separation_line(self._crop_image_sides(image))

        upper_jaw_image = self.crop_upper_jaw(image, self.top_jaw_line)
        lower_jaw_image = self.crop_lower_jaw(image, self.lower_jaw_line)

        # Filter the image
        upper_jaw_image = Filter.process_image(upper_jaw_image, median_kernel=5, bilateral_kernel=17, bilateral_color=6)
        lower_jaw_image = Filter.process_image(lower_jaw_image, median_kernel=5, bilateral_kernel=17, bilateral_color=6)

        upper_jaw_image = self._convert_to_binary_image(upper_jaw_image)
        lower_jaw_image = self._convert_to_binary_image(lower_jaw_image)

        # Find the lines in the image
        upper_lines = self._find_hough_lines(upper_jaw_image, threshold=15)
        lower_lines = self._find_hough_lines(lower_jaw_image, threshold=15)

        # Filter out lines
        upper_lines = self._filter_lines(upper_lines, upper_jaw_image.shape, line_offset=6, max_line_gap=90)
        lower_lines = self._filter_lines(lower_lines, lower_jaw_image.shape, line_offset=2, max_line_gap=60)

        # Compute starting points
        rho0, theta0 = upper_lines[0]
        rho1, theta1 = upper_lines[1]
        rho2, theta2 = upper_lines[2]
        position0 = np.array((rho0-35+self.crop_sides_size, 50+(self.top_jaw_line - self.crop_upper_jaw_top_size)))
        position1 = np.array((rho0+(rho1-rho0)/2 + self.crop_sides_size, 80+(self.top_jaw_line - self.crop_upper_jaw_top_size)))
        position2 = np.array((rho1+(rho2-rho1)/2 + self.crop_sides_size, 80+(self.top_jaw_line - self.crop_upper_jaw_top_size)))
        position3 = np.array((rho2+35+self.crop_sides_size, 50+(self.top_jaw_line - self.crop_upper_jaw_top_size)))
        rho0, theta0 = lower_lines[0]
        rho1, theta1 = lower_lines[1]
        rho2, theta2 = lower_lines[2]
        position4 = np.array((rho0-40+self.crop_sides_size, 90+self.lower_jaw_line))
        position5 = np.array((rho0+(rho1-rho0)/2+self.crop_sides_size, 90+self.lower_jaw_line))
        position6 = np.array((rho1+(rho2-rho1)/2+self.crop_sides_size, 90+self.lower_jaw_line))
        position7 = np.array((rho2+40+self.crop_sides_size, 90+self.lower_jaw_line))

        return [(position0, 48, 0.05),
                (position1, 55, 0.2),
                (position2, 55, 0.2),
                (position3, 48, 0.3),
                (position4, 40, 0),
                (position5, 38, -0.05),
                (position6, 38, -0.10),
                (position7, 40, -0.15)
                ]
Exemplo n.º 5
0
    def set_radiograph_image(self, radiograph_image):
        '''
        Processes image and saves it's subsampled version into appropriate resolution levels
        :param image: Image to process. Should be original radiograph image without processing.
        '''
        self.crop_translation = -Filter.get_cropping_region(radiograph_image).left_top
        image = Filter.crop_image(radiograph_image)
        for i in range(0, self.levels_count):
            if i > 0:
                image = MultiResolutionFramework.downsample_image(image)

            median_kernel, bilateral_kernel, bilateral_color = MultiResolutionFramework.get_filter_presets(i)
            filtered_image = Filter.process_image(image.copy(), median_kernel, bilateral_kernel, bilateral_color)
            self.resolution_levels[i].image = filtered_image
            self.resolution_levels[i].default_image = image.copy()
Exemplo n.º 6
0
    def train(self):
        '''
        Train landmark model and prepare images for every level of Gaussian pyramid.
        '''
        if Config.use_file_cache:
            success = True
            for i, level in enumerate(self.resolution_levels):
                success = success and level.landmark_model.load_from_file(str(i))

            if success:
                return

        # Iterate all radiographs one by one to save memory
        for r, radiograph in enumerate(self.data_manager.radiographs):
            image = radiograph.image
            teeth = self.datamanager.get_all_teeth_from_radiograph(radiograph, True)

            # Crop image to region of interest and translate all teeth into cropped region
            crop_translation = -Filter.get_cropping_region(image).left_top
            image = Filter.crop_image(image)
            for tooth in teeth:
                tooth.translate(crop_translation)

            for i in range(0, self.levels_count):
                resolution_level = self.resolution_levels[i]
                assert isinstance(resolution_level, ResolutionLevel)

                # Downsample the image if needed and update teeth parameters
                if i > 0:
                    image, teeth = MultiResolutionFramework.downsample(image, teeth)

                # Create copy of the image to not modify the original one
                filtered_image = image.copy()
                assert isinstance(filtered_image, np.ndarray)

                # Filter the image
                median_kernel, bilateral_kernel, bilateral_color = MultiResolutionFramework.get_filter_presets(i)
                filtered_image = Filter.process_image(filtered_image, median_kernel, bilateral_kernel, bilateral_color)

                # Add new data to the training set for given resolution
                resolution_level.landmark_model.add_training_data(teeth, filtered_image)
                print "#Training level %d done" % (i + 1)
            print "###Training radiograph %d done" % (r + 1)

        # Finish training at all levels
        for i, resolution_level in enumerate(self.resolution_levels):
            resolution_level.landmark_model.finish_training()
            resolution_level.landmark_model.save_to_file(str(i))
Exemplo n.º 7
0
    def __init__(self):
        """ Init the Detector. Will set extractors, NER models, filter, checker and dataframe"""
        # NER Models
        self.model = spacy.load("en_core_web_lg")
        self.ner = AlbertNER(os.path.join(MODELS_PATH, "conll03"))

        # Check data with movie database
        df_movies = pd.read_csv(os.path.join(ASSETS_PATH, "movies.csv"))
        df_movies = df_movies.loc[df_movies.actors.notna()]
        self.df_movies = df_movies

        # Extractors
        self.award_extractor = AwardsExtractor(df_movies)
        self.genre_extractor = GenreExtractor(df_movies)
        self.person_extractor = PersonExtractor(df_movies)
        self.rate_extractor = RateExtractor(df_movies)
        self.song_extractor = SongExtractor(df_movies)
        self.title_extractor = TitleExtractor(df_movies)
        self.trailer_extractor = TrailerExtractor(df_movies)
        self.year_extractor = YearExtractor(df_movies)
        self.extractors = [
            self.award_extractor, self.genre_extractor, self.person_extractor,
            self.rate_extractor, self.song_extractor, self.title_extractor,
            self.trailer_extractor, self.year_extractor
        ]

        # Filter
        self.filter = Filter()
        # Checker
        self.checker = Checker(self.filter, df_movies)
Exemplo n.º 8
0
class TestFilter(unittest.TestCase):

    def setUp(self):
        self.T = 0.001 # Filter update period
        self.Tf = 3 # Filter time constant
        self.filter = Filter(self.T, self.Tf)

    def test_filter_response(self):
        input = 100
        # How many calls it's needed, for 1 filter time constant (Tao) to pass
        callsPerTao = int(self.Tf/self.T)
        # Values after 1, 2, 3 Tao
        expectedOutputs = [63, 86, 95]
        expectedError = 1

        for i in range(3):
            actual = self._loopAndReturn(callsPerTao, input)
            expected = expectedOutputs[i]
            self._assert(actual, expected, expectedError)

    def _loopAndReturn(self, numTimes, value):
        for _ in range(numTimes):
            output = self.filter.calculateOutput(value)
        return output

    def _assert(self, actual, expected, maxError):
        expectedMin = expected - maxError
        expectedMax = expected + maxError
        assert expectedMin <= actual <= expectedMax, \
                f"expected {expectedMin}-{expectedMax}, actual {actual}"
Exemplo n.º 9
0
 def _open_radiograph(self):
     file_dialog = QFileDialog(self)
     file_dialog.setDirectory("./data/Radiographs")
     file_dialog.setFileMode(QFileDialog.ExistingFile)
     file_dialog.setNameFilter("Radiograph (*.tif)")
     if file_dialog.exec_() and len(file_dialog.selectedFiles()) == 1:
         radiograph = Radiograph()
         radiograph.path_to_img = file_dialog.selectedFiles()[0]
         #self.image = radiograph.image
         #crop_translation = -Filter.get_cropping_region(radiograph.image).left_top
         self.image = Filter.crop_image(radiograph.image)
         self.lines = None
         self._redraw()
Exemplo n.º 10
0
 def _open_radiograph(self):
     file_dialog = QFileDialog(self)
     file_dialog.setDirectory("./data/Radiographs")
     file_dialog.setFileMode(QFileDialog.ExistingFile)
     file_dialog.setNameFilter("Radiograph (*.tif)")
     if file_dialog.exec_() and len(file_dialog.selectedFiles()) == 1:
         if self.animator is not None:
             self.animator.stop()
         radiograph = Radiograph()
         radiograph.path_to_img = file_dialog.selectedFiles()[0]
         self.image = radiograph.image
         self.radiograph_image = Filter.crop_image(radiograph.image)
         self.cached_init_poses = None
         self._redraw(self.active_shape_model.current_tooth)
    def trainGrayLevelModelForAllPointsAllExamples(self, k, resolutionLevel, filter_settings):
        """
        calcualtes the gray-level vectors for all point of all teeth in all provided examples.
        """
        radiographs = self.completeDataHandler.getRadiographs(deepCopy=True)

        g_all = list()
        for radiograph in radiographs:
            
            # Scale image to current resolution level
            for i in range(resolutionLevel):
                radiograph.downScale()

            # Pre process image
            img = Filter.process_image(deepcopy(radiograph.getImage(deepCopy=True)), filter_settings[0], filter_settings[1], filter_settings[2])
            derivate_img = Filter.laplacian(img)
            # derivate_img = Filter.histogramEql(Filter.process_image(deepcopy(img), filter_settings[0], filter_settings[1], filter_settings[2]))
            # derivate_img = Filter.process_image(deepcopy(derivate_img), median_kernel=3, bilateral_kernel=5)
            
            g_ex = self.trainGrayLevelModelForAllPointsOneExample(img, derivate_img, radiograph, k)
            g_all.append(g_ex)
        
        return np.array(g_all)
Exemplo n.º 12
0
    def find_jaw_divider(self):
        self.y_top_line, self.y_lower_line = self.pose_model._find_jaw_separation_line(self.pose_model._crop_image_sides(self.image))

        upper_jaw_image = self.pose_model.crop_upper_jaw(self.image, self.y_top_line)
        lower_jaw_image = self.pose_model.crop_lower_jaw(self.image, self.y_lower_line)

        # Filter the image
        upper_jaw_image = Filter.process_image(upper_jaw_image, median_kernel=5, bilateral_kernel=17, bilateral_color=6)
        lower_jaw_image = Filter.process_image(lower_jaw_image, median_kernel=5, bilateral_kernel=17, bilateral_color=6)

        upper_jaw_image = self.pose_model._convert_to_binary_image(upper_jaw_image)
        lower_jaw_image = self.pose_model._convert_to_binary_image(lower_jaw_image)

        upper_lines = self.pose_model._find_hough_lines(upper_jaw_image, threshold=15)
        lower_lines = self.pose_model._find_hough_lines(lower_jaw_image, threshold=15)

        # Filter out lines
        upper_lines = self.pose_model._filter_lines(upper_lines, upper_jaw_image.shape, line_offset=6, max_line_gap=90)
        lower_lines = self.pose_model._filter_lines(lower_lines, lower_jaw_image.shape, line_offset=2, max_line_gap=60)

        self.image = lower_jaw_image
        self.lines = lower_lines
        self._redraw()
Exemplo n.º 13
0
    def __init__(self, data_manager, pca):
        super(FitterDialog, self).__init__()
        self.setupUi(self)
        self.setAttribute(Qt.WA_DeleteOnClose)

        assert isinstance(data_manager, DataManager)
        self.data_manager = data_manager
        self.pca = pca
        self.active_shape_model = ActiveShapeModel(self.data_manager, self.pca)
        self.initial_pose_model = InitialPoseModel(self.data_manager)

        self.scene = InteractiveGraphicsScene()
        self.graphicsView.setScene(self.scene)
        self.scene.clicked.connect(self._set_position)

        self.image = self.data_manager.radiographs[0].image
        self.radiograph_image = Filter.crop_image(self.data_manager.radiographs[0].image)

        self.openButton.clicked.connect(self._open_radiograph)
        self.exportButton.clicked.connect(self._export_result)
        self.exportButton.setEnabled(False)

        self.zoomSlider.setRange(-10, 10)
        self.zoomSlider.setValue(self.current_scale)
        self.zoomSlider.valueChanged.connect(self.change_scale)

        self.levelSlider.setRange(1, MultiResolutionFramework.levels_count)
        self.levelSlider.setValue(self.current_sampling_level + 1)
        self.levelSlider.valueChanged.connect(self.user_change_level)

        self.stepButton.clicked.connect(self._perform_one_step_asm)
        self.animateButton.clicked.connect(self._animator_entry)

        self._scales = np.empty(self.pca.eigen_values.shape)
        for i, deviation in enumerate(self.pca.get_allowed_deviation()):
            slider = QSlider(Qt.Horizontal, self.paramsScrollAreaContents)
            slider.setRange(-self.slider_resolution, self.slider_resolution)
            # slider.valueChanged.connect(self.slider_moved)
            self.paramsScrollAreaContents.layout().addWidget(slider)
            self._scales[i] = deviation / self.slider_resolution

        self.show_sampled_positions = self.sampledPositionsCheckBox.isChecked()
        self.sampledPositionsCheckBox.stateChanged.connect(self.change_show_positions)
        self.startingPoseSpinBox.setMaximum(len(self.data_manager.selector)-1)

        self._redraw(self.active_shape_model.current_tooth)
Exemplo n.º 14
0
    def __init__(self, data_manager):
        super(InitialPoseDialog, self).__init__()
        self.setupUi(self)
        self.setAttribute(Qt.WA_DeleteOnClose)

        assert isinstance(data_manager, DataManager)
        self.data_manager = data_manager
        self.pose_model = InitialPoseModel(data_manager)

        self.scene = QGraphicsScene()
        self.graphicsView.setScene(self.scene)

        self.image = Filter.crop_image(self.data_manager.radiographs[0].image)

        self.findButton.clicked.connect(self.find_jaw_divider)
        self.openButton.clicked.connect(self._open_radiograph)

        self._redraw()
Exemplo n.º 15
0
def main():
    random.seed()
    colorama.init()
    print_timeless(COLOR_HEADER + "Insomniac " + get_version() + "\n" +
                   COLOR_ENDC)

    ok, args = _parse_arguments()
    if not ok:
        return

    global device_id
    device_id = args.device
    if not check_adb_connection(is_device_id_provided=(device_id is not None)):
        return

    print("Instagram version: " + get_instagram_version())

    device = create_device(args.old, device_id)
    if device is None:
        return

    if len(args.interact) > 0 and args.interaction_users_amount:
        args.__setattr__("full_interact", args.interact.copy())

    while True:
        mode = None
        is_interact_enabled = len(args.interact) > 0
        is_unfollow_enabled = args.unfollow is not None
        is_unfollow_non_followers_enabled = args.unfollow_non_followers is not None
        is_unfollow_any_enabled = args.unfollow_any is not None
        is_remove_mass_followers_enabled = args.remove_mass_followers is not None and int(
            args.remove_mass_followers) > 0
        total_enabled = int(is_interact_enabled) + int(is_unfollow_enabled) + int(is_unfollow_non_followers_enabled) \
                        + int(is_unfollow_any_enabled) + int(is_remove_mass_followers_enabled)
        if total_enabled == 0:
            print_timeless(
                COLOR_FAIL +
                "You have to specify one of the actions: --interact, --unfollow, "
                "--unfollow-non-followers, --unfollow-any, --remove-mass-followers"
                + COLOR_ENDC)
            return
        elif total_enabled > 1:
            print_timeless(
                COLOR_FAIL +
                "Running Insomniac with two or more actions is not supported yet."
                + COLOR_ENDC)
            return
        else:
            if is_interact_enabled:
                print("Action: interact with @" +
                      ", @".join(str(blogger) for blogger in args.interact))
                mode = Mode.INTERACT
            elif is_unfollow_enabled:
                print("Action: unfollow " + str(args.unfollow))
                mode = Mode.UNFOLLOW
            elif is_unfollow_non_followers_enabled:
                print("Action: unfollow " + str(args.unfollow_non_followers) +
                      " non followers")
                mode = Mode.UNFOLLOW_NON_FOLLOWERS
            elif is_unfollow_any_enabled:
                print("Action: unfollow any " + str(args.unfollow_any))
                mode = Mode.UNFOLLOW_ANY
            elif is_remove_mass_followers_enabled:
                print("Action: remove " + str(args.remove_mass_followers) +
                      " mass followers")
                mode = Mode.REMOVE_MASS_FOLLOWERS

        profile_filter = Filter(args.filters)

        start_work_hour, stop_work_hour = 1, 24

        if args.working_hours:
            start_work_hour, stop_work_hour = get_left_right_values(
                args.working_hours, "Working hours {}", (9, 21))

            if not (1 <= start_work_hour <= 24):
                print(COLOR_FAIL +
                      "Working-hours left-boundary ({0}) is not valid. "
                      "Using (9) instead".format(start_work_hour) + COLOR_ENDC)
                start_work_hour = 9

            if not (1 <= stop_work_hour <= 24):
                print(COLOR_FAIL +
                      "Working-hours right-boundary ({0}) is not valid. "
                      "Using (21) instead".format(stop_work_hour) + COLOR_ENDC)
                stop_work_hour = 21

        now = datetime.now()

        if not (start_work_hour <= now.hour <= stop_work_hour):
            print(
                "Current Time: {0} which is out of working-time range ({1}-{2})"
                .format(now.strftime("%H:%M:%S"), start_work_hour,
                        stop_work_hour))
            next_execution = '0 {0} * * *'.format(start_work_hour)

            time_to_sleep_seconds = (croniter(
                next_execution, now).get_next(datetime) - now).seconds + 60
            print("Going to sleep until working time ({0} minutes)...".format(
                time_to_sleep_seconds / 60))

            sleep(time_to_sleep_seconds)
            continue

        if len(args.full_interact) > 0 and args.interaction_users_amount:
            args.interact = args.full_interact.copy()
            users_amount = get_value(args.interaction_users_amount,
                                     "Interaction user amount {}", 100)

            if users_amount >= len(args.interact):
                print(
                    "interaction-users-amount parameter is equal or higher then the users-interact list. "
                    "Choosing all list for interaction.")
            else:
                amount_to_remove = len(args.interact) - users_amount
                for i in range(0, amount_to_remove):
                    args.interact.remove(random.choice(args.interact))

        session_state = SessionState()
        session_state.args = args.__dict__
        sessions.append(session_state)

        print_timeless(COLOR_WARNING + "\n-------- START: " +
                       str(session_state.startTime) + " --------" + COLOR_ENDC)
        open_instagram(device_id)
        session_state.my_username,\
            session_state.my_followers_count,\
            session_state.my_following_count = get_my_profile_info(device)
        storage = Storage(session_state.my_username)

        # IMPORTANT: in each job we assume being on the top of the Profile tab already
        if mode == Mode.INTERACT:
            on_interaction = partial(_on_interaction,
                                     likes_limit=int(args.total_likes_limit))

            _job_handle_bloggers(
                device, args.interact, args.likes_count,
                int(args.follow_percentage),
                int(args.follow_limit) if args.follow_limit else None,
                int(args.total_follow_limit)
                if args.total_follow_limit else None, storage, profile_filter,
                args.interactions_count, on_interaction)
        elif mode == Mode.UNFOLLOW:
            print_timeless("")
            _job_unfollow(device, get_value(args.unfollow, "Unfollow {}",
                                            100), storage,
                          int(args.min_following),
                          UnfollowRestriction.FOLLOWED_BY_SCRIPT)
        elif mode == Mode.UNFOLLOW_NON_FOLLOWERS:
            print_timeless("")
            _job_unfollow(
                device,
                get_value(args.unfollow_non_followers,
                          "Unfollow {} non followers", 100), storage,
                int(args.min_following),
                UnfollowRestriction.FOLLOWED_BY_SCRIPT_NON_FOLLOWERS)
        elif mode == Mode.UNFOLLOW_ANY:
            print_timeless("")
            _job_unfollow(device,
                          get_value(args.unfollow_any,
                                    "Unfollow {} any", 100), storage,
                          int(args.min_following), UnfollowRestriction.ANY)
        elif mode == Mode.REMOVE_MASS_FOLLOWERS:
            _job_remove_mass_followers(device, int(args.remove_mass_followers),
                                       int(args.max_following), storage)

        close_instagram(device_id)
        print_copyright(session_state.my_username)
        session_state.finishTime = datetime.now()
        print_timeless(COLOR_WARNING + "-------- FINISH: " +
                       str(session_state.finishTime) + " --------" +
                       COLOR_ENDC)

        if args.repeat:
            print_full_report(sessions)
            print_timeless("")
            repeat = get_value(args.repeat, "Sleep for {} minutes", 180)
            try:
                sleep(60 * repeat)
                _refresh_args_by_conf_file(args)
            except KeyboardInterrupt:
                print_full_report(sessions)
                sessions.persist(directory=session_state.my_username)
                sys.exit(0)
        else:
            break

    print_full_report(sessions)
    sessions.persist(directory=session_state.my_username)
Exemplo n.º 16
0
 def setUp(self):
     self.T = 0.001 # Filter update period
     self.Tf = 3 # Filter time constant
     self.filter = Filter(self.T, self.Tf)
 def setup(self):
     self.finder = Filter()
Exemplo n.º 18
0
def main():
    colorama.init()
    print_timeless(COLOR_HEADER + "Insomniac " + get_version() + "\n" +
                   COLOR_ENDC)

    ok, args = _parse_arguments()
    if not ok:
        return

    global device_id
    device_id = args.device
    device = uiautomator.device if device_id is None else uiautomator.Device(
        device_id)

    if not check_adb_connection(is_device_id_provided=(device_id is not None)):
        return

    mode = None
    is_interact_enabled = len(args.interact) > 0
    is_unfollow_enabled = int(args.unfollow) > 0
    is_unfollow_non_followers_enabled = int(args.unfollow_non_followers) > 0
    total_enabled = int(is_interact_enabled) + int(is_unfollow_enabled) + int(
        is_unfollow_non_followers_enabled)
    if total_enabled == 0:
        print_timeless(
            COLOR_FAIL +
            "You have to specify one of the actions: --interact, --unfollow, "
            "--unfollow-non-followers" + COLOR_ENDC)
        return
    elif total_enabled > 1:
        print_timeless(
            COLOR_FAIL +
            "Running Insomniac with two or more actions is not supported yet."
            + COLOR_ENDC)
        return
    else:
        if is_interact_enabled:
            print("Action: interact with @" +
                  ", @".join(str(blogger) for blogger in args.interact))
            mode = Mode.INTERACT
        elif is_unfollow_enabled:
            print("Action: unfollow " + str(args.unfollow))
            mode = Mode.UNFOLLOW
        elif is_unfollow_non_followers_enabled:
            print("Action: unfollow " + str(args.unfollow_non_followers) +
                  " non followers")
            mode = Mode.UNFOLLOW_NON_FOLLOWERS

    profile_filter = Filter()
    on_interaction = partial(_on_interaction,
                             interactions_limit=int(args.interactions_count),
                             likes_limit=int(args.total_likes_limit))

    while True:
        session_state = SessionState()
        sessions.append(session_state)

        print_timeless(COLOR_WARNING + "\n-------- START: " +
                       str(session_state.startTime) + " --------" + COLOR_ENDC)
        open_instagram(device_id)
        session_state.my_username = get_my_username(device)
        storage = Storage(session_state.my_username)

        # IMPORTANT: in each job we assume being on the top of the Profile tab already
        if mode == Mode.INTERACT:
            _job_handle_bloggers(device, args.interact, int(args.likes_count),
                                 int(args.follow_percentage), storage,
                                 profile_filter, on_interaction)
        elif mode == Mode.UNFOLLOW:
            _job_unfollow(device,
                          int(args.unfollow),
                          storage,
                          only_non_followers=False)
        elif mode == Mode.UNFOLLOW_NON_FOLLOWERS:
            _job_unfollow(device,
                          int(args.unfollow_non_followers),
                          storage,
                          only_non_followers=True)

        close_instagram(device_id)
        print_copyright(session_state.my_username)
        session_state.finishTime = datetime.now()
        print_timeless(COLOR_WARNING + "-------- FINISH: " +
                       str(session_state.finishTime) + " --------" +
                       COLOR_ENDC)

        if args.repeat:
            _print_report()
            repeat = int(args.repeat)
            print_timeless("")
            print("Sleep for " + str(repeat) + " minutes")
            try:
                sleep(60 * repeat)
            except KeyboardInterrupt:
                _print_report()
                sys.exit(0)
        else:
            break

    _print_report()
 def test_process_data_empty(self):
     self.finder = Filter()
     data = self.finder.process()
     self.assertListEqual(data, [])
 def test_data_empty(self):
     self.finder = Filter()
     data = self.finder.size()
     self.assertEqual(data, 0)
Exemplo n.º 21
0
    def on_status(self, status):
        nyan = Filter()

        # ここのshiotomohackを自分のユーザネームにする
        if str(status.user.screen_name) == "shiotomohack":
            nyan.nyan_filter(status)
Exemplo n.º 22
0
parser = argparse.ArgumentParser(description='Analyze non-trivial chess moves.')
parser.add_argument('-e', '--config', help='path to UCI Server configuration file (relative or absolute)', default="uciServer.json", type=str)

# Can't be -h due to conflicts (Why?) TODO:fix
parser.add_argument('-hd', '--headers', help='what headers should be put to output PGN file (all, concise, minimal)', default="minimal", type=str)
parser.add_argument('-cp', '--centipawns', help='min. required cp (centipawns) difference between best and second best move shown by the engine', default=50, type=int)
parser.add_argument('-d', '--depth', help='min engine search depth for best and second best move shown by the engine (in multivariation mode)', default=30, type=int)
parser.add_argument('-n', '--variations-number', help='number of variations in multi-variation mode', default=2, type=int)
parser.add_argument('args', nargs='*') # Input and output .PGN file path
args = parser.parse_args()

input_pgn_path = args.args[0] if len(args.args) > 0 else None
output_pgn_path = args.args[1] if len(args.args) > 1 else None

games = Game(input_pgn_path).games
filter = Filter()
saver = Saver(output_pgn_path)
time = calculate_time_for_messenger(args.depth)

if os.path.exists(args.config):
    with open(args.config) as json_file:
        config = json.load(json_file)

    for game in games:
        board = game.board()
        headers = get_headers(game, args)
        with Communicator(config) as communicator:
            for move in game.mainline_moves():
                filter.evaluate_position(move, game, board, args, communicator, time)
                if filter.pass_filters(move, game, board, args, communicator, time):
                    saver.save(board.fen(), filter.moves, filter.evaluations, filter.played, headers)
Exemplo n.º 23
0
def main():
    random.seed()
    colorama.init()
    print_timeless(COLOR_HEADER + "Insomniac " + get_version() + "\n" +
                   COLOR_ENDC)

    ok, args = _parse_arguments()
    if not ok:
        return

    global device_id
    device_id = args.device
    if not check_adb_connection(is_device_id_provided=(device_id is not None)):
        return

    device = create_device(args.old, device_id)
    if device is None:
        return

    mode = None
    is_interact_enabled = len(args.interact) > 0
    is_unfollow_enabled = args.unfollow is not None
    is_unfollow_non_followers_enabled = args.unfollow_non_followers is not None
    is_unfollow_any_enabled = args.unfollow_any is not None
    is_remove_mass_followers_enabled = args.remove_mass_followers is not None and int(
        args.remove_mass_followers) > 0
    total_enabled = int(is_interact_enabled) + int(is_unfollow_enabled) + int(is_unfollow_non_followers_enabled) \
        + int(is_unfollow_any_enabled) + int(is_remove_mass_followers_enabled)
    if total_enabled == 0:
        print_timeless(
            COLOR_FAIL +
            "You have to specify one of the actions: --interact, --unfollow, "
            "--unfollow-non-followers, --unfollow-any, --remove-mass-followers"
            + COLOR_ENDC)
        return
    elif total_enabled > 1:
        print_timeless(
            COLOR_FAIL +
            "Running Insomniac with two or more actions is not supported yet."
            + COLOR_ENDC)
        return
    else:
        if is_interact_enabled:
            print("Action: interact with @" +
                  ", @".join(str(blogger) for blogger in args.interact))
            mode = Mode.INTERACT
        elif is_unfollow_enabled:
            print("Action: unfollow " + str(args.unfollow))
            mode = Mode.UNFOLLOW
        elif is_unfollow_non_followers_enabled:
            print("Action: unfollow " + str(args.unfollow_non_followers) +
                  " non followers")
            mode = Mode.UNFOLLOW_NON_FOLLOWERS
        elif is_unfollow_any_enabled:
            print("Action: unfollow any " + str(args.unfollow_any))
            mode = Mode.UNFOLLOW_ANY
        elif is_remove_mass_followers_enabled:
            print("Action: remove " + str(args.remove_mass_followers) +
                  " mass followers")
            mode = Mode.REMOVE_MASS_FOLLOWERS

    profile_filter = Filter()

    while True:
        session_state = SessionState()
        session_state.args = args.__dict__
        sessions.append(session_state)

        print_timeless(COLOR_WARNING + "\n-------- START: " +
                       str(session_state.startTime) + " --------" + COLOR_ENDC)
        open_instagram(device_id)
        session_state.my_username,\
            session_state.my_followers_count,\
            session_state.my_following_count = get_my_profile_info(device)
        storage = Storage(session_state.my_username)

        # IMPORTANT: in each job we assume being on the top of the Profile tab already
        if mode == Mode.INTERACT:
            on_interaction = partial(_on_interaction,
                                     likes_limit=int(args.total_likes_limit))

            _job_handle_bloggers(
                device, args.interact, args.likes_count,
                int(args.follow_percentage),
                int(args.follow_limit) if args.follow_limit else None, storage,
                profile_filter, args.interactions_count, on_interaction)
        elif mode == Mode.UNFOLLOW:
            print_timeless("")
            _job_unfollow(device, get_value(args.unfollow, "Unfollow {}",
                                            100), storage,
                          int(args.min_following),
                          UnfollowRestriction.FOLLOWED_BY_SCRIPT)
        elif mode == Mode.UNFOLLOW_NON_FOLLOWERS:
            print_timeless("")
            _job_unfollow(
                device,
                get_value(args.unfollow_non_followers,
                          "Unfollow {} non followers", 100), storage,
                int(args.min_following),
                UnfollowRestriction.FOLLOWED_BY_SCRIPT_NON_FOLLOWERS)
        elif mode == Mode.UNFOLLOW_ANY:
            print_timeless("")
            _job_unfollow(device,
                          get_value(args.unfollow_any,
                                    "Unfollow {} any", 100), storage,
                          int(args.min_following), UnfollowRestriction.ANY)
        elif mode == Mode.REMOVE_MASS_FOLLOWERS:
            _job_remove_mass_followers(device, int(args.remove_mass_followers),
                                       int(args.max_following), storage)

        close_instagram(device_id)
        print_copyright(session_state.my_username)
        session_state.finishTime = datetime.now()
        print_timeless(COLOR_WARNING + "-------- FINISH: " +
                       str(session_state.finishTime) + " --------" +
                       COLOR_ENDC)

        if args.repeat:
            print_full_report(sessions)
            print_timeless("")
            repeat = get_value(args.repeat, "Sleep for {} minutes", 180)
            try:
                sleep(60 * repeat)
            except KeyboardInterrupt:
                print_full_report(sessions)
                sessions.persist(directory=session_state.my_username)
                sys.exit(0)
        else:
            break

    print_full_report(sessions)
    sessions.persist(directory=session_state.my_username)
 def test_process_data_singlelist(self):
     self.finder = Filter(['a', 'b', 'a'])
     data = self.finder.process()
     self.assertNotEqual(data, 0)
 def test_data_exist(self):
     self.finder = Filter(['a', 'b', 'a'])
     data = self.finder.size()
     self.assertNotEqual(data, 0)
 def test_process_data_multipleList(self):
     self.finder = Filter(['a', 'b', 'a', 'ab', 'cd', 'abc', 'xyz'])
     data = self.finder.process()
     self.assertNotEqual(data, 0)