def __init__(self, n_channel=3, n_classes=10, image_size=24, n_layers=20):
        # 设置超参数
        self.n_channel = n_channel
        self.n_classes = n_classes
        self.image_size = image_size
        self.n_layers = n_layers

        # 输入变量
        self.images = tf.placeholder(
            dtype=tf.float32, shape=[None, self.image_size, self.image_size, self.n_channel],
            name='images')
        self.labels = tf.placeholder(
            dtype=tf.int64, shape=[None], name='labels')
        self.keep_prob = tf.placeholder(
            dtype=tf.float32, name='keep_prob')
        self.global_step = tf.Variable(
            0, dtype=tf.int32, name='global_step')

        # 网络输出
        conv_layer1 = ConvLayer(
            input_shape=(None, image_size, image_size, n_channel), n_size=3, n_filter=3,
            stride=1,activation='relu', batch_normal=True, weight_decay=1e-4,
            name='conv1')

        # 数据流
        basic_conv = conv_layer1.get_output(input=self.images)


        # basic_conv = conv_layer1.get_output(input=self.images)
        with slim.arg_scope(squeezenet_arg_scope()):
            self.logits_1 = self.plain_cnn_inference(images=basic_conv, n_layers=14, scope_name='net_1')



        # 目标函数
        self.objective_1 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1, labels=self.labels))




        self.objective = self.objective_1
        tf.add_to_collection('losses', self.objective)
        self.avg_loss = tf.add_n(tf.get_collection('losses'))

        # 优化器
        lr = tf.cond(tf.less(self.global_step, 50000),
                     lambda: tf.constant(0.01),
                     lambda: tf.cond(tf.less(self.global_step, 100000),
                                     lambda: tf.constant(0.005),
                                     lambda: tf.cond(tf.less(self.global_step, 150000),
                                                     lambda: tf.constant(0.0025),
                                                     lambda: tf.constant(0.001))))
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
            self.avg_loss, global_step=self.global_step)

        # 观察值
        correct_prediction_1 = tf.equal(self.labels, tf.argmax(self.logits_1, 1))
        self.accuracy_1 = tf.reduce_mean(tf.cast(correct_prediction_1, 'float'))
Exemplo n.º 2
0
    def __init__(self, n_channel=3, n_classes=10, image_size=24):
        # 输入变量
        self.images = tf.placeholder(
            dtype=tf.float32,
            shape=[None, image_size, image_size, n_channel],
            name='images')
        self.labels = tf.placeholder(dtype=tf.int64,
                                     shape=[None],
                                     name='labels')
        self.keep_prob = tf.placeholder(dtype=tf.float32, name='keep_prob')
        self.global_step = tf.Variable(0, dtype=tf.int32, name='global_step')

        # 网络结构
        conv_layer1 = ConvLayer(input_shape=(None, image_size, image_size,
                                             n_channel),
                                n_size=3,
                                n_filter=64,
                                stride=1,
                                activation='relu',
                                batch_normal=True,
                                weight_decay=1e-4,
                                name='conv1')
        pool_layer1 = PoolLayer(n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=True,
                                name='pool1')

        conv_layer2 = ConvLayer(input_shape=(None, int(image_size / 2),
                                             int(image_size / 2), 64),
                                n_size=3,
                                n_filter=128,
                                stride=1,
                                activation='relu',
                                batch_normal=True,
                                weight_decay=1e-4,
                                name='conv2')
        pool_layer2 = PoolLayer(n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=True,
                                name='pool2')

        conv_layer3 = ConvLayer(input_shape=(None, int(image_size / 4),
                                             int(image_size / 4), 128),
                                n_size=3,
                                n_filter=256,
                                stride=1,
                                activation='relu',
                                batch_normal=True,
                                weight_decay=1e-4,
                                name='conv3')
        pool_layer3 = PoolLayer(n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=True,
                                name='pool3')

        dense_layer1 = DenseLayer(input_shape=(None, int(image_size / 8) *
                                               int(image_size / 8) * 256),
                                  hidden_dim=1024,
                                  activation='relu',
                                  dropout=True,
                                  keep_prob=self.keep_prob,
                                  batch_normal=True,
                                  weight_decay=1e-4,
                                  name='dense1')

        dense_layer2 = DenseLayer(input_shape=(None, 1024),
                                  hidden_dim=n_classes,
                                  activation='none',
                                  dropout=False,
                                  keep_prob=None,
                                  batch_normal=False,
                                  weight_decay=1e-4,
                                  name='dense2')

        # 数据流
        hidden_conv1 = conv_layer1.get_output(input=self.images)
        hidden_pool1 = pool_layer1.get_output(input=hidden_conv1)
        hidden_conv2 = conv_layer2.get_output(input=hidden_pool1)
        hidden_pool2 = pool_layer2.get_output(input=hidden_conv2)
        hidden_conv3 = conv_layer3.get_output(input=hidden_pool2)
        hidden_pool3 = pool_layer3.get_output(input=hidden_conv3)
        input_dense1 = tf.reshape(
            hidden_pool3,
            [-1, int(image_size / 8) * int(image_size / 8) * 256])
        output_dense1 = dense_layer1.get_output(input=input_dense1)
        logits = dense_layer2.get_output(input=output_dense1)

        # 目标函数
        self.objective = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                           labels=self.labels))
        tf.add_to_collection('losses', self.objective)
        self.avg_loss = tf.add_n(tf.get_collection('losses'))
        # 优化器
        lr = tf.cond(
            tf.less(self.global_step, 50000), lambda: tf.constant(0.01),
            lambda: tf.cond(tf.less(self.global_step, 100000), lambda: tf.
                            constant(0.001), lambda: tf.constant(0.0001)))
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
            self.avg_loss, global_step=self.global_step)

        # 观察值
        correct_prediction = tf.equal(self.labels, tf.argmax(logits, 1))
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
Exemplo n.º 3
0
 def __init__(self, n_channel=3, n_classes=10, image_size=24):
     # 输入变量
     self.images = tf.placeholder(
         dtype=tf.float32, shape=[None, image_size, image_size, n_channel], name='images')
     self.labels = tf.placeholder(
         dtype=tf.int64, shape=[None], name='labels')
     self.keep_prob = tf.placeholder(
         dtype=tf.float32, name='keep_prob')
     self.global_step = tf.Variable( 
         0, dtype=tf.int32, name='global_step')
     
     # 网络结构
     conv_layer1 = ConvLayer(
         input_shape=(None, image_size, image_size, n_channel), n_size=3, n_filter=64, 
         stride=1, activation='relu', batch_normal=True, weight_decay=1e-4,
         name='conv1')
     pool_layer1 = PoolLayer(
         n_size=2, stride=2, mode='max', resp_normal=True, name='pool1')
     
     conv_layer2 = ConvLayer(
         input_shape=(None, int(image_size/2), int(image_size/2), 64), n_size=3, n_filter=128,
         stride=1, activation='relu', batch_normal=True, weight_decay=1e-4,
         name='conv2')
     pool_layer2 = PoolLayer(
         n_size=2, stride=2, mode='max', resp_normal=True, name='pool2')
     
     conv_layer3 = ConvLayer(
         input_shape=(None, int(image_size/4), int(image_size/4), 128), n_size=3, n_filter=256, 
         stride=1, activation='relu', batch_normal=True, weight_decay=1e-4, 
         name='conv3')
     pool_layer3 = PoolLayer(
         n_size=2, stride=2, mode='max', resp_normal=True, name='pool3')
     
     dense_layer1 = DenseLayer(
         input_shape=(None, int(image_size/8) * int(image_size/8) * 256), hidden_dim=1024, 
         activation='relu', dropout=True, keep_prob=self.keep_prob, 
         batch_normal=True, weight_decay=1e-4, name='dense1')
     
     dense_layer2 = DenseLayer(
         input_shape=(None, 1024), hidden_dim=n_classes,
         activation='none', dropout=False, keep_prob=None, 
         batch_normal=False, weight_decay=1e-4, name='dense2')
     
     # 数据流
     hidden_conv1 = conv_layer1.get_output(input=self.images)
     hidden_pool1 = pool_layer1.get_output(input=hidden_conv1)
     hidden_conv2 = conv_layer2.get_output(input=hidden_pool1)
     hidden_pool2 = pool_layer2.get_output(input=hidden_conv2)
     hidden_conv3 = conv_layer3.get_output(input=hidden_pool2)
     hidden_pool3 = pool_layer3.get_output(input=hidden_conv3)
     input_dense1 = tf.reshape(hidden_pool3, [-1, int(image_size/8) * int(image_size/8) * 256])
     output_dense1 = dense_layer1.get_output(input=input_dense1)
     logits = dense_layer2.get_output(input=output_dense1)
     
     # 目标函数
     self.objective = tf.reduce_sum(
         tf.nn.sparse_softmax_cross_entropy_with_logits(
             logits=logits, labels=self.labels))
     tf.add_to_collection('losses', self.objective)
     self.avg_loss = tf.add_n(tf.get_collection('losses'))
     # 优化器
     lr = tf.cond(tf.less(self.global_step, 50000), 
                  lambda: tf.constant(0.01),
                  lambda: tf.cond(tf.less(self.global_step, 100000), 
                                  lambda: tf.constant(0.001),
                                  lambda: tf.constant(0.0001)))
     self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
         self.avg_loss, global_step=self.global_step)
     
     # 观察值
     correct_prediction = tf.equal(self.labels, tf.argmax(logits, 1))
     self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))
Exemplo n.º 4
0
    def __init__(self, n_channel=3, n_classes=10, image_size=24, n_layers=44,is_training =True):
        # 设置超参数
        self.n_channel = n_channel
        self.n_classes = n_classes
        self.image_size = image_size
        self.n_layers = n_layers
        self.is_training  = is_training



        # 输入变量
        self.images = tf.placeholder(
            dtype=tf.float32, shape=[None, self.image_size, self.image_size, self.n_channel],
            name='images')
        self.labels = tf.placeholder(
            dtype=tf.int64, shape=[None], name='labels')
        self.keep_prob = tf.placeholder(
            dtype=tf.float32, name='keep_prob')
        self.global_step = tf.Variable(
            0, dtype=tf.int32, name='global_step')

        # 网络输出
        conv_layer1 = ConvLayer(
            input_shape=(None, image_size, image_size, n_channel), n_size=3, n_filter=3,
            stride=1,activation='relu', batch_normal=True, weight_decay=1e-4,
            name='conv1')

        dense_layer_1 = DenseLayer(
            input_shape=(None, 512),
            hidden_dim=self.n_classes,
            activation='none', dropout=False, keep_prob=None,
            batch_normal=False, weight_decay=1e-4, name='dense_layer_1')

        dense_layer_2 = DenseLayer(
            input_shape=(None, 490),
            hidden_dim=self.n_classes,
            activation='none', dropout=False, keep_prob=None,
            batch_normal=False, weight_decay=1e-4, name='dense_layer_2')

        dense_layer_3 = DenseLayer(
            input_shape=(None, 200),
            hidden_dim=self.n_classes,
            activation='none', dropout=False, keep_prob=None,
            batch_normal=False, weight_decay=1e-4, name='dense_layer_3')


        # 数据流
        #父层
        basic_conv = conv_layer1.get_output(input=self.images)

        #子层1
        hidden_conv_1 = self.residual_inference(images=basic_conv, scope_name='net_1_1')
        hidden_conv_1 = self.son_google_v2_part(hidden_conv_1,'net_1_2')
        input_dense_1 = tf.reduce_mean(hidden_conv_1, reduction_indices=[1, 2])
        self.logits_1 = dense_layer_1.get_output(input=input_dense_1)

        #子层1--孙1 densenet
        self.logits_1_1 = self.grand_son_1_1(hidden_conv_1,scope_name='grand_son_1')

        #子层1--孙2 densenet_bc
        self.logits_1_2 = self.grand_son_1_2(hidden_conv_1,scope_name='grand_son_2')

        # 子层1--孙3 mobilenet --- depth conv
        self.logits_1_3 = self.grand_son_1_3(hidden_conv_1, scope_name='grand_son_3')

        #子层2
        hidden_conv_2 = self.residual_inference(images=basic_conv, scope_name='net_2_1')
        hidden_conv_2 = self.son_google_v3_part_2(hidden_conv_2,'net_2_2')
        # global average pooling
        input_dense_2 = tf.reduce_mean(hidden_conv_2, reduction_indices=[1, 2])
        self.logits_2 = dense_layer_2.get_output(input=input_dense_2)

        # 子层3
        hidden_conv_3 = self.residual_inference(images=basic_conv, scope_name='net_3_1')
        hidden_conv_3 =self.son_cnn_part_3(hidden_conv_3,scope_name='net_3_2')
        # global average pooling
        input_dense_3= tf.reduce_mean(hidden_conv_3, reduction_indices=[1, 2])
        self.logits_3 = dense_layer_3.get_output(input=input_dense_3)

        # 目标函数
        self.objective_1 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1, labels=self.labels))

        self.objective_1_1 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1_1, labels=self.labels))

        self.objective_1_2 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1_2, labels=self.labels))

        self.objective_1_3 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1_3, labels=self.labels))


        self.objective_2 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_2, labels=self.labels))

        self.objective_3 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_3, labels=self.labels))

        # self.objective_4 = tf.reduce_sum(
        #     tf.nn.sparse_softmax_cross_entropy_with_logits(
        #         logits=self.logits_4, labels=self.labels))
        #
        # self.objective_5 = tf.reduce_sum(
        #     tf.nn.sparse_softmax_cross_entropy_with_logits(
        #         logits=self.logits_5, labels=self.labels))

        self.objective = \
            self.objective_1 + self.objective_1_1 +self.objective_1_2 +self.objective_1_3 \
            +self.objective_2 \
            +self.objective_3

        tf.add_to_collection('losses', self.objective)
        self.avg_loss = tf.add_n(tf.get_collection('losses'))

        # 优化器
        lr = tf.cond(tf.less(self.global_step, 50000),
                     lambda: tf.constant(0.01),
                     lambda: tf.cond(tf.less(self.global_step, 75000),
                                     lambda: tf.constant(0.005),
                                     lambda: tf.cond(tf.less(self.global_step, 100000),
                                                     lambda: tf.constant(0.001),
                                                     lambda: tf.constant(0.001))))
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
            self.avg_loss, global_step=self.global_step)

        # 观察值
        #son1
        correct_prediction_1 = tf.equal(self.labels, tf.argmax(self.logits_1, 1))
        self.accuracy_1 = tf.reduce_mean(tf.cast(correct_prediction_1, 'float'))

        # 观察值 grand son1
        correct_prediction_1_1 = tf.equal(self.labels, tf.argmax(self.logits_1_1, 1))
        self.accuracy_1_1 = tf.reduce_mean(tf.cast(correct_prediction_1_1, 'float'))

        # 观察值 grand son2
        correct_prediction_1_2 = tf.equal(self.labels, tf.argmax(self.logits_1_2, 1))
        self.accuracy_1_2 = tf.reduce_mean(tf.cast(correct_prediction_1_2, 'float'))

        # 观察值 grand son3
        correct_prediction_1_3 = tf.equal(self.labels, tf.argmax(self.logits_1_3, 1))
        self.accuracy_1_3 = tf.reduce_mean(tf.cast(correct_prediction_1_3, 'float'))

        # son2
        correct_prediction_2 = tf.equal(self.labels, tf.argmax(self.logits_2, 1))
        self.accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2, 'float'))

        # son3
        correct_prediction_3 = tf.equal(self.labels, tf.argmax(self.logits_3, 1))
        self.accuracy_3 = tf.reduce_mean(tf.cast(correct_prediction_3, 'float'))
Exemplo n.º 5
0
def net_2(hidden_pool1, keep_prob, image_size, n_classes):
    with tf.variable_scope('net_2'):
        conv_layer2_2 = ConvLayer(input_shape=(None, int(image_size / 2),
                                               int(image_size / 2), 64),
                                  n_size=3,
                                  n_filter=128,
                                  stride=1,
                                  activation='relu',
                                  batch_normal=True,
                                  weight_decay=1e-4,
                                  name='conv2')
        pool_layer2_2 = PoolLayer(n_size=2,
                                  stride=2,
                                  mode='max',
                                  resp_normal=True,
                                  name='pool2')

        conv_layer3_2 = ConvLayer(input_shape=(None, int(image_size / 4),
                                               int(image_size / 4), 128),
                                  n_size=3,
                                  n_filter=256,
                                  stride=1,
                                  activation='relu',
                                  batch_normal=True,
                                  weight_decay=1e-4,
                                  name='conv3')
        pool_layer3_2 = PoolLayer(n_size=2,
                                  stride=2,
                                  mode='max',
                                  resp_normal=True,
                                  name='pool3')

        dense_layer1_2 = DenseLayer(input_shape=(None, int(image_size / 8) *
                                                 int(image_size / 8) * 256),
                                    hidden_dim=1024,
                                    activation='relu',
                                    dropout=True,
                                    keep_prob=keep_prob,
                                    batch_normal=True,
                                    weight_decay=1e-4,
                                    name='dense1')

        dense_layer2_2 = DenseLayer(input_shape=(None, 1024),
                                    hidden_dim=n_classes,
                                    activation='none',
                                    dropout=False,
                                    keep_prob=None,
                                    batch_normal=False,
                                    weight_decay=1e-4,
                                    name='dense2')

        # net 1
        hidden_conv2_2 = conv_layer2_2.get_output(input=hidden_pool1)
        hidden_pool2_2 = pool_layer2_2.get_output(input=hidden_conv2_2)
        hidden_conv3_2 = conv_layer3_2.get_output(input=hidden_pool2_2)
        hidden_pool3_2 = pool_layer3_2.get_output(input=hidden_conv3_2)
        input_dense1_2 = tf.reshape(
            hidden_pool3_2,
            [-1, int(image_size / 8) * int(image_size / 8) * 256])
        output_dense1_2 = dense_layer1_2.get_output(input=input_dense1_2)
        logits_2 = dense_layer2_2.get_output(input=output_dense1_2)
        return logits_2
Exemplo n.º 6
0
    def __init__(self, n_channel=3, n_classes=10, image_size=24):
        # 输入变量
        self.images = tf.placeholder(
            dtype=tf.float32,
            shape=[None, image_size, image_size, n_channel],
            name='images')
        self.labels = tf.placeholder(dtype=tf.int64,
                                     shape=[None],
                                     name='labels')
        self.keep_prob = tf.placeholder(dtype=tf.float32, name='keep_prob')
        self.global_step = tf.Variable(0, dtype=tf.int32, name='global_step')

        # 网络结构
        conv_layer1 = ConvLayer(input_shape=(None, image_size, image_size,
                                             n_channel),
                                n_size=3,
                                n_filter=64,
                                stride=1,
                                activation='relu',
                                batch_normal=True,
                                weight_decay=1e-4,
                                name='conv1')
        pool_layer1 = PoolLayer(n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=True,
                                name='pool1')

        # 数据流
        hidden_conv1 = conv_layer1.get_output(input=self.images)
        hidden_pool1 = pool_layer1.get_output(input=hidden_conv1)

        #net_1
        self.logits_1 = net_1(hidden_pool1, self.keep_prob, image_size,
                              n_classes)

        #net 2
        self.logits_2 = net_2(hidden_pool1, self.keep_prob, image_size,
                              n_classes)

        #net 3
        self.logits_3 = net_3(hidden_pool1, self.keep_prob, image_size,
                              n_classes)

        # 目标函数
        self.objective_1 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_1, labels=self.labels))

        self.objective_2 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_2, labels=self.labels))

        self.objective_3 = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(
                logits=self.logits_3, labels=self.labels))

        self.objective = self.objective_1 + self.objective_2 + self.objective_3

        tf.add_to_collection('losses', self.objective)
        self.avg_loss = tf.add_n(tf.get_collection('losses'))

        # 优化器
        lr = tf.cond(
            tf.less(self.global_step, 50000), lambda: tf.constant(0.01),
            lambda: tf.cond(tf.less(self.global_step, 100000), lambda: tf.
                            constant(0.001), lambda: tf.constant(0.0001)))
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
            self.avg_loss, global_step=self.global_step)

        # 观察值
        correct_prediction_1 = tf.equal(self.labels,
                                        tf.argmax(self.logits_1, 1))
        self.accuracy_1 = tf.reduce_mean(tf.cast(correct_prediction_1,
                                                 'float'))

        correct_prediction_2 = tf.equal(self.labels,
                                        tf.argmax(self.logits_2, 1))
        self.accuracy_2 = tf.reduce_mean(tf.cast(correct_prediction_2,
                                                 'float'))

        correct_prediction_3 = tf.equal(self.labels,
                                        tf.argmax(self.logits_3, 1))
        self.accuracy_3 = tf.reduce_mean(tf.cast(correct_prediction_3,
                                                 'float'))
Exemplo n.º 7
0
    def inference(self, images):
        # 网络结构
        conv_layer1 = ConvLayer(input_shape=(self.batch_size, self.image_size,
                                             self.image_size, self.n_channel),
                                n_size=3,
                                n_filter=16,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv1')
        pool_layer1 = PoolLayer(input_shape=(self.batch_size, self.image_size,
                                             self.image_size, 16),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool1')

        conv_layer2 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 2),
                                             int(self.image_size / 2), 16),
                                n_size=3,
                                n_filter=32,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv2')
        pool_layer2 = PoolLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 2),
                                             int(self.image_size / 2), 32),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool2')

        conv_layer3 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 4),
                                             int(self.image_size / 4), 32),
                                n_size=3,
                                n_filter=64,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv3')
        pool_layer3 = PoolLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 4),
                                             int(self.image_size / 4), 64),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool3')

        conv_layer4 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 8),
                                             int(self.image_size / 8), 64),
                                n_size=3,
                                n_filter=128,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv4')
        pool_layer4 = PoolLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 8),
                                             int(self.image_size / 8), 128),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool4')

        conv_layer5 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 16),
                                             int(self.image_size / 16), 128),
                                n_size=3,
                                n_filter=256,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv5')
        pool_layer5 = PoolLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 16),
                                             int(self.image_size / 16), 256),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool5')

        conv_layer6 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 32),
                                             int(self.image_size / 32), 256),
                                n_size=3,
                                n_filter=512,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv6')
        pool_layer6 = PoolLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 32),
                                             int(self.image_size / 32), 512),
                                n_size=2,
                                stride=2,
                                mode='max',
                                resp_normal=False,
                                name='pool6')

        conv_layer7 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 64),
                                             int(self.image_size / 64), 512),
                                n_size=3,
                                n_filter=1024,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv7')
        conv_layer8 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 64),
                                             int(self.image_size / 64), 1024),
                                n_size=3,
                                n_filter=1024,
                                stride=1,
                                activation='leaky_relu',
                                batch_normal=True,
                                weight_decay=5e-4,
                                name='conv8')
        conv_layer9 = ConvLayer(input_shape=(self.batch_size,
                                             int(self.image_size / 64),
                                             int(self.image_size / 64), 1024),
                                n_size=1,
                                n_filter=self.n_boxes * 5,
                                stride=1,
                                activation='none',
                                batch_normal=False,
                                weight_decay=5e-4,
                                name='conv9')

        # 数据流
        print('\n%-10s\t%-20s\t%-20s\t%s' %
              ('Name', 'Filter', 'Input', 'Output'))
        hidden_conv1 = conv_layer1.get_output(input=images)
        hidden_pool1 = pool_layer1.get_output(input=hidden_conv1)

        hidden_conv2 = conv_layer2.get_output(input=hidden_pool1)
        hidden_pool2 = pool_layer2.get_output(input=hidden_conv2)

        hidden_conv3 = conv_layer3.get_output(input=hidden_pool2)
        hidden_pool3 = pool_layer3.get_output(input=hidden_conv3)

        hidden_conv4 = conv_layer4.get_output(input=hidden_pool3)
        hidden_pool4 = pool_layer4.get_output(input=hidden_conv4)

        hidden_conv5 = conv_layer5.get_output(input=hidden_pool4)
        hidden_pool5 = pool_layer5.get_output(input=hidden_conv5)

        hidden_conv6 = conv_layer6.get_output(input=hidden_pool5)
        hidden_pool6 = pool_layer6.get_output(input=hidden_conv6)

        hidden_conv7 = conv_layer7.get_output(input=hidden_pool6)
        hidden_conv8 = conv_layer8.get_output(input=hidden_conv7)
        hidden_conv9 = conv_layer9.get_output(input=hidden_conv8)

        logits = hidden_conv9

        print()
        sys.stdout.flush()
        # 网络输出
        return logits
Exemplo n.º 8
0
class ConvNet():
    def __init__(self, n_channel, n_classes, image_height, image_width,
                 sentence_length, vocab_size, embedding_dim, LSTM_hidden_size):

        # 输入变量
        self.images1 = tf.placeholder(
            dtype=tf.float32,
            shape=[None, image_height, image_width, n_channel],
            name='images')
        self.images2 = tf.placeholder(
            dtype=tf.float32,
            shape=[None, image_height, image_width, n_channel],
            name='images')
        self.labels = tf.placeholder(dtype=tf.int64,
                                     shape=[None],
                                     name='labels')
        '''
        self.instructions = tf.placeholder(
            dtype=tf.int64, shape=[None, sentence_length], name='instructions')
        '''
        self.keep_prob = tf.placeholder(dtype=tf.float32, name='keep_prob')
        self.global_step = tf.Variable(0, dtype=tf.int32, name='global_step')

        # CNN网络结构
        self.conv_layer1 = ConvLayer(input_shape=(None, image_height,
                                                  image_width, n_channel),
                                     n_size=3,
                                     n_filter=64,
                                     stride=1,
                                     activation='relu',
                                     batch_normal=False,
                                     weight_decay=1e-4,
                                     name='conv1')
        self.pool_layer1 = PoolLayer(n_size=2,
                                     stride=2,
                                     mode='max',
                                     resp_normal=False,
                                     name='pool1')

        self.conv_layer2 = ConvLayer(input_shape=(None, int(image_height / 2),
                                                  int(image_width / 2), 64),
                                     n_size=3,
                                     n_filter=128,
                                     stride=1,
                                     activation='relu',
                                     batch_normal=False,
                                     weight_decay=1e-4,
                                     name='conv2')
        self.pool_layer2 = PoolLayer(n_size=2,
                                     stride=2,
                                     mode='max',
                                     resp_normal=False,
                                     name='pool2')

        self.conv_layer3 = ConvLayer(input_shape=(None, int(image_height / 4),
                                                  int(image_width / 4), 128),
                                     n_size=3,
                                     n_filter=256,
                                     stride=1,
                                     activation='relu',
                                     batch_normal=False,
                                     weight_decay=1e-4,
                                     name='conv3')
        self.pool_layer3 = PoolLayer(n_size=2,
                                     stride=2,
                                     mode='max',
                                     resp_normal=False,
                                     name='pool3')

        self.dense_layer1 = DenseLayer(
            input_shape=(None,
                         int(image_height / 8) * int(image_width / 8) * 256),
            hidden_dim=1024,
            activation='relu',
            dropout=True,
            keep_prob=self.keep_prob,
            batch_normal=False,
            weight_decay=1e-4,
            name='dense1')

        self.dense_layer2 = DenseLayer(input_shape=(None, 1024),
                                       hidden_dim=512,
                                       activation='none',
                                       dropout=False,
                                       keep_prob=None,
                                       batch_normal=False,
                                       weight_decay=1e-4,
                                       name='dense2')

        # CNN数据流
        cnn_output1 = self.get_output(self.images1, image_height, image_width)
        cnn_output2 = self.get_output(self.images2, image_height, image_width)
        '''
        #LSTM
        embedding = tf.get_variable("embedding", [vocab_size, embedding_dim])	# [19, 128]
        input_embeddings = tf.nn.embedding_lookup(embedding, self.instructions)	# [batch_size, 5, 128]
        instruc_cell = tf.nn.rnn_cell.BasicLSTMCell(LSTM_hidden_size)	# LSTM_hidden_size = 128
        lstm_outputs, lstm_state = tf.nn.dynamic_rnn(instruc_cell, input_embeddings, dtype=tf.float32)	#[batch_size, 5, 128]
        lstm_output = lstm_outputs[:, -1, :]	#[batch_size, 128]
        '''

        #predict
        fully_connected1 = DenseLayer(input_shape=(None, 512),
                                      hidden_dim=256,
                                      activation='relu',
                                      dropout=False,
                                      keep_prob=self.keep_prob,
                                      batch_normal=False,
                                      weight_decay=1e-4,
                                      name='fc1')
        fully_connected2 = DenseLayer(input_shape=(None, 256),
                                      hidden_dim=n_classes,
                                      activation='relu',
                                      dropout=False,
                                      keep_prob=self.keep_prob,
                                      batch_normal=False,
                                      weight_decay=1e-4,
                                      name='fc2')

        multi_output = tf.multiply(cnn_output1,
                                   cnn_output2,
                                   name='element_wise_multiplication')
        output_fc1 = fully_connected1.get_output(input=multi_output)
        logits = fully_connected2.get_output(input=output_fc1)
        logit = tf.argmax(logits, 1, name='predicted_class')

        # 目标函数
        self.objective = tf.reduce_sum(
            tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,
                                                           labels=self.labels))
        tf.add_to_collection('losses', self.objective)
        self.avg_loss = tf.add_n(tf.get_collection('losses'))
        # 优化器
        lr = tf.cond(
            tf.less(self.global_step, 5000), lambda: tf.constant(0.01),
            lambda: tf.cond(tf.less(self.global_step, 10000), lambda: tf.
                            constant(0.001), lambda: tf.constant(0.0001)))
        self.optimizer = tf.train.AdamOptimizer(learning_rate=lr).minimize(
            self.avg_loss, global_step=self.global_step)

        # 观察值
        correct_prediction = tf.equal(self.labels, logit)
        self.accuracy = tf.reduce_mean(tf.cast(correct_prediction, 'float'))

    def get_output(self, input, image_height, image_width):
        hidden_conv1 = self.conv_layer1.get_output(input=input)
        hidden_pool1 = self.pool_layer1.get_output(input=hidden_conv1)
        hidden_conv2 = self.conv_layer2.get_output(input=hidden_pool1)
        hidden_pool2 = self.pool_layer2.get_output(input=hidden_conv2)
        hidden_conv3 = self.conv_layer3.get_output(input=hidden_pool2)
        hidden_pool3 = self.pool_layer3.get_output(input=hidden_conv3)
        input_dense1 = tf.reshape(
            hidden_pool3,
            [-1, int(image_height / 8) * int(image_width / 8) * 256])
        output_dense1 = self.dense_layer1.get_output(input=input_dense1)
        cnn_output = self.dense_layer2.get_output(input=output_dense1)
        #logit = tf.argmax(logits, 1, name='predicted_class')
        return cnn_output

    def train(self, dataloader, backup_path, n_epoch=5, batch_size=128):
        # 构建会话
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.45)
        self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        # 模型保存器
        self.saver = tf.train.Saver(var_list=tf.global_variables(),
                                    write_version=tf.train.SaverDef.V2,
                                    max_to_keep=10)
        # 模型初始化
        self.sess.run(tf.global_variables_initializer())
        # 模型训练
        for epoch in range(0, n_epoch + 1):
            train_images1 = dataloader.train_images1
            train_images2 = dataloader.train_images2
            #train_instructions = dataloader.train_instructions
            train_labels = dataloader.train_labels
            valid_images1 = dataloader.valid_images1
            valid_images2 = dataloader.valid_images2
            #valid_instructions = dataloader.valid_instructions
            valid_labels = dataloader.valid_labels

            # 开始本轮的训练,并计算目标函数值
            train_accuracy, train_loss = 0.0, 0.0
            for i in range(0, dataloader.n_train, batch_size):
                batch_images1 = train_images1[i:i + batch_size]
                batch_images2 = train_images2[i:i + batch_size]
                #batch_instructions = train_instructions[i: i+batch_size]
                batch_labels = train_labels[i:i + batch_size]
                [_, avg_accuracy, avg_loss, iteration] = self.sess.run(
                    fetches=[
                        self.optimizer, self.accuracy, self.avg_loss,
                        self.global_step
                    ],
                    feed_dict={
                        self.images1: batch_images1,
                        self.images2: batch_images2,
                        #self.instructions: batch_instructions,
                        self.labels: batch_labels,
                        self.keep_prob: 0.5
                    })
                train_accuracy += avg_accuracy * batch_images1.shape[0]
                train_loss += avg_loss * batch_images1.shape[0]
            train_accuracy = 1.0 * train_accuracy / dataloader.n_train
            train_loss = 1.0 * train_loss / dataloader.n_train

            # 在训练之后,获得本轮的验证集损失值和准确率
            valid_accuracy, valid_loss = 0.0, 0.0
            for i in range(0, dataloader.n_valid, batch_size):
                batch_images1 = valid_images1[i:i + batch_size]
                batch_images2 = valid_images2[i:i + batch_size]
                #batch_instructions = valid_instructions[i: i+batch_size]
                batch_labels = valid_labels[i:i + batch_size]
                [avg_accuracy, avg_loss] = self.sess.run(
                    fetches=[self.accuracy, self.avg_loss],
                    feed_dict={
                        self.images1: batch_images1,
                        self.images2: batch_images2,
                        #self.instructions: batch_instructions,
                        self.labels: batch_labels,
                        self.keep_prob: 1.0
                    })
                valid_accuracy += avg_accuracy * batch_images1.shape[0]
                valid_loss += avg_loss * batch_images1.shape[0]
            valid_accuracy = 1.0 * valid_accuracy / dataloader.n_valid
            valid_loss = 1.0 * valid_loss / dataloader.n_valid

            print(
                'epoch{%d}, iter[%d], train precision: %.6f, train loss: %.6f, '
                'valid precision: %.6f, valid loss: %.6f' %
                (epoch, iteration, train_accuracy, train_loss, valid_accuracy,
                 valid_loss))
            sys.stdout.flush()

            # 保存模型
            if not os.path.exists(backup_path):
                os.makedirs(backup_path)
            saver_path = self.saver.save(
                self.sess, os.path.join(backup_path,
                                        'model_%d.ckpt' % (epoch)))

        self.sess.close()

    def test(self, dataloader, backup_path, epoch, batch_size=128):
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.25)
        self.sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))
        # 读取模型
        self.saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
        model_path = os.path.join(backup_path, 'model_%d.ckpt' % (epoch))
        assert (os.path.exists(model_path + '.index'))
        self.saver.restore(self.sess, model_path)
        print('read model from %s' % (model_path))
        # 在测试集上计算准确率
        accuracy_list = []
        test_images = dataloader.data_augmentation(dataloader.test_images,
                                                   flip=False,
                                                   crop=True,
                                                   crop_shape=(24, 24, 3),
                                                   whiten=True,
                                                   noise=False)
        test_labels = dataloader.test_labels
        for i in range(0, dataloader.n_test, batch_size):
            batch_images = test_images[i:i + batch_size]
            batch_labels = test_labels[i:i + batch_size]
            [avg_accuracy] = self.sess.run(fetches=[self.accuracy],
                                           feed_dict={
                                               self.images: batch_images,
                                               self.labels: batch_labels,
                                               self.keep_prob: 1.0
                                           })
            accuracy_list.append(avg_accuracy)
        print('test precision: %.4f' % (numpy.mean(accuracy_list)))
        self.sess.close()

    def debug(self):
        sess = tf.Session()
        sess.run(tf.global_variables_initializer())
        [temp] = sess.run(fetches=[self.observe],
                          feed_dict={
                              self.images:
                              numpy.random.random(size=[128, 24, 24, 3]),
                              self.labels:
                              numpy.random.randint(low=0, high=9, size=[
                                  128,
                              ]),
                              self.keep_prob:
                              1.0
                          })
        print(temp)

    def observe_salience(self,
                         batch_size=128,
                         image_h=32,
                         image_w=32,
                         n_channel=3,
                         num_test=10,
                         epoch=1):
        if not os.path.exists('results/epoch%d/' % (epoch)):
            os.makedirs('results/epoch%d/' % (epoch))
        saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
        sess = tf.Session()
        # 读取模型
        model_path = 'backup/cifar10/model_%d.ckpt' % (epoch)
        assert (os.path.exists(model_path + '.index'))
        saver.restore(sess, model_path)
        print('read model from %s' % (model_path))
        # 获取图像并计算梯度
        for batch in range(num_test):
            batch_image, batch_label = cifar10.test.next_batch(batch_size)
            image = numpy.array(
                batch_image.reshape([image_h, image_w, n_channel]) * 255,
                dtype='uint8')
            result = sess.run(
                [
                    self.labels_prob, self.labels_max_prob, self.labels_pred,
                    self.gradient
                ],
                feed_dict={
                    self.images: batch_image,
                    self.labels: batch_label,
                    self.keep_prob: 0.5
                })
            print(result[0:3], result[3][0].shape)
            gradient = sess.run(self.gradient,
                                feed_dict={
                                    self.images: batch_image,
                                    self.keep_prob: 0.5
                                })
            gradient = gradient[0].reshape([image_h, image_w, n_channel])
            gradient = numpy.max(gradient, axis=2)
            gradient = numpy.array((gradient - gradient.min()) * 255 /
                                   (gradient.max() - gradient.min()),
                                   dtype='uint8')
            print(gradient.shape)
            # 使用pyplot画图
            plt.subplot(121)
            plt.imshow(image)
            plt.subplot(122)
            plt.imshow(gradient, cmap=plt.cm.gray)
            plt.savefig('results/epoch%d/result_%d.png' % (epoch, batch))

    def observe_hidden_distribution(self,
                                    batch_size=128,
                                    image_h=32,
                                    image_w=32,
                                    n_channel=3,
                                    num_test=10,
                                    epoch=1):
        if not os.path.exists('results/epoch%d/' % (epoch)):
            os.makedirs('results/epoch%d/' % (epoch))
        saver = tf.train.Saver(write_version=tf.train.SaverDef.V2)
        sess = tf.Session()
        # 读取模型
        model_path = 'backup/cifar10/model_%d.ckpt' % (epoch)
        if os.path.exists(model_path + '.index'):
            saver.restore(sess, model_path)
            print('read model from %s' % (model_path))
        else:
            sess.run(tf.global_variables_initializer())
        # 获取图像并计算梯度
        for batch in range(num_test):
            batch_image, batch_label = cifar10.test.next_batch(batch_size)
            result = sess.run(
                [
                    self.nobn_conv1, self.bn_conv1, self.nobn_conv2,
                    self.bn_conv2, self.nobn_conv3, self.bn_conv3,
                    self.nobn_fc1, self.nobn_fc1, self.nobn_softmax,
                    self.bn_softmax
                ],
                feed_dict={
                    self.images: batch_image,
                    self.labels: batch_label,
                    self.keep_prob: 0.5
                })
            distribution1 = result[0][:, 0].flatten()
            distribution2 = result[1][:, 0].flatten()
            distribution3 = result[2][:, 0].flatten()
            distribution4 = result[3][:, 0].flatten()
            distribution5 = result[4][:, 0].flatten()
            distribution6 = result[5][:, 0].flatten()
            distribution7 = result[6][:, 0].flatten()
            distribution8 = result[7][:, 0].flatten()
            plt.subplot(241)
            plt.hist(distribution1, bins=50, color='#1E90FF')
            plt.title('convolutional layer 1')
            plt.subplot(242)
            plt.hist(distribution3, bins=50, color='#1C86EE')
            plt.title('convolutional layer 2')
            plt.subplot(243)
            plt.hist(distribution5, bins=50, color='#1874CD')
            plt.title('convolutional layer 3')
            plt.subplot(244)
            plt.hist(distribution7, bins=50, color='#5CACEE')
            plt.title('full connection layer')
            plt.subplot(245)
            plt.hist(distribution2, bins=50, color='#00CED1')
            plt.title('batch normalized')
            plt.subplot(246)
            plt.hist(distribution4, bins=50, color='#48D1CC')
            plt.title('batch normalized')
            plt.subplot(247)
            plt.hist(distribution6, bins=50, color='#40E0D0')
            plt.title('batch normalized')
            plt.subplot(248)
            plt.hist(distribution8, bins=50, color='#00FFFF')
            plt.title('batch normalized')
            plt.show()