Exemplo n.º 1
0
def main():
  
    with tf.Graph().as_default():
        args={
            'lfw_dir':'/Users/unclewang/Downloads/lfw_mtcnnpy_60',
            'lfw_batch_size':128,
            'model':'/Users/unclewang/PycharmProjects/facenet/models/facenet/20170512-110547/20170512-110547.pb',
            'image_size':160,
            'lfw_pairs':'/Users/unclewang/PycharmProjects/facenet/data/pairs.txt',
            'lfw_file_ext':'png',
            'lfw_nrof_folds':10
        }
        with tf.Session() as sess:
            
            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args['lfw_pairs']))

            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args['lfw_dir']), pairs, args['lfw_file_ext'])

            # Load the model
            facenet.load_model(args['model'])
            
            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")
            
            #image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args['image_size']
            embedding_size = embeddings.get_shape()[1]
        
            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args['lfw_batch_size']
            nrof_images = len(paths)
            nrof_batches = int(math.ceil(1.0*nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))
            for i in range(nrof_batches):
                start_index = i*batch_size
                end_index = min((i+1)*batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False, image_size)
                feed_dict = { images_placeholder:images, phase_train_placeholder:False }
                emb_array[start_index:end_index,:] = sess.run(embeddings, feed_dict=feed_dict)
        
            tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(emb_array, 
                actual_issame, nrof_folds=args['lfw_nrof_folds'])

            print('Accuracy: %1.3f+-%1.3f' % (np.mean(accuracy), np.std(accuracy)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' % (val, val_std, far))

            auc = metrics.auc(fpr, tpr)
            print('Area Under Curve (AUC): %1.3f' % auc)
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x), 0., 1.)
            print('Equal Error Rate (EER): %1.3f' % eer)
Exemplo n.º 2
0
def main(args):
    with tf.Graph().as_default():

        with tf.Session() as sess:

            # Read the file containing the pairs used for testing
            # 1. 读入之前的pairs.txt文件
            # 读入后如[['Abel_Pacheco','1','4']]
            pairs = lfw.read_pairs(os.path.expanduser(
                args.lfw_pairs))  # 剪裁好了的图片

            # Get the paths for the corresponding images
            # 获取文件路径和是否匹配关系对
            all_paths, actual_issame = lfw.get_paths(
                os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
            paths = all_paths[0::2]
            print("paths shape =", len(paths))  # 12000
            print("paths=", paths[0:200])
            print('actual_issame shape=', len(actual_issame))  # 6000
            print('actual_issame', actual_issame[0:200])

            # Load the model
            facenet.load_model(args.model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            # image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args.image_size
            embedding_size = embeddings.get_shape()[1]  # 128

            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args.lfw_batch_size
            nrof_images = len(paths)  # 12000
            nrof_batches = int(math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))  # 12000* 128
            for i in range(nrof_batches):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            # # 输出调试信息
            # embeddings1 = emb_array[0::2]  # 6000张图片 是每一个Paris中的第一张
            # embeddings2 = emb_array[1::2]  # 6000张图片 是每一个Paris中的第2张
            # diff = np.subtract(embeddings1, embeddings2)  # 每一个Paris中的两个向量相减
            # dist = np.sum(np.square(diff), 1)  # 向量二范数的平方,两个向量之间距离的平方。 每一个Pari之间的欧几里得距离的平方
            # # #也可以说是两张图片之间特征向量的相似度
            # print('------------------------------------------------------------')
            # print('dist.len=', len(dist))
            need_embeddings = emb_array
            # 使用embedding的信息计算相似度。
            f = open(r'E:\MyPythonProjects\captchaOneChineseTrain/result.txt',
                     'w')
            for number_of_tests in range(10000):
                f.write(str(number_of_tests).zfill(4) + ',')
                # 每个里面有13张图片 :9 10 11 12
                for i in range(9, 13):
                    emb_i = need_embeddings[(number_of_tests * 13) + i]
                    min_index = 0
                    min_dist = 999999
                    for j in range(9):
                        emb_j = need_embeddings[(number_of_tests * 13) + j]
                        # 这里计算相似度使用的是欧式距离
                        diff = np.subtract(emb_i, emb_j)
                        dist = np.sum(np.square(diff))
                        # 使用余弦相似度
                        # dist=np.sum(emb_i*emb_j)/(np.linalg.norm(emb_i)*np.linalg.norm(emb_j))
                        if dist < min_dist:
                            min_dist = dist
                            min_index = j
                    f.write(str(min_index))
                f.write('\n')
            f.close()
def main(args):
    network = importlib.import_module(args.model_def)
    image_size = (args.image_size, args.image_size)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')  # 用当前时间作为文件夹名称
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir),
                           subdir)  # log保存路径
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir),
                             subdir)  # 训练好的模型的保存路径
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    stat_file_name = os.path.join(log_dir, 'stat.h5')

    # Write arguments to a text file 这个文件保存一些训练时候用到的超参数信息
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    # 保存一些版本信息
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    dataset = facenet.get_dataset(args.data_dir)  # 训练数据路径
    if args.filter_filename:
        dataset = filter_dataset(dataset,
                                 os.path.expanduser(args.filter_filename),
                                 args.filter_percentile,
                                 args.filter_min_nrof_images_per_class)
    # 数据集划分为训练集和验证集
    if args.validation_set_split_ratio > 0.0:
        train_set, val_set = facenet.split_dataset(
            dataset, args.validation_set_split_ratio,
            args.min_nrof_val_images_per_class, 'SPLIT_IMAGES')
    else:
        train_set, val_set = dataset, []
    # 分类的数量,即训练集中的文件夹数量
    nrof_classes = len(train_set)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    # 预训练模型
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    # 测试用的lfw数据的路径
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Get a list of image paths and their labels
        # 获取训练图像路径和对应的标签
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list) > 0, 'The training set should not be empty'
        # 用于验证的图像的路径和对应的标签
        val_image_list, val_label_list = facenet.get_image_paths_and_labels(
            val_set)

        # Create a queue that produces indices into the image_list and label_list
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size,
                                                    num_epochs=None,
                                                    shuffle=True,
                                                    seed=None,
                                                    capacity=32)

        index_dequeue_op = index_queue.dequeue_many(
            args.batch_size * args.epoch_size, 'index_dequeue')

        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 1),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int32,
                                            shape=(None, 1),
                                            name='labels')
        control_placeholder = tf.placeholder(tf.int32,
                                             shape=(None, 1),
                                             name='control')

        nrof_preprocess_threads = 4
        # 先入先出队列
        input_queue = data_flow_ops.FIFOQueue(
            capacity=2000000,
            dtypes=[tf.string, tf.int32, tf.int32],
            shapes=[(1, ), (1, ), (1, )],
            shared_name=None,
            name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder, control_placeholder],
            name='enqueue_op')
        image_batch, label_batch = facenet.create_input_pipeline(
            input_queue, image_size, nrof_preprocess_threads,
            batch_size_placeholder)

        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')

        print('Number of classes in training set: %d' % nrof_classes)
        print('Number of examples in training set: %d' % len(image_list))

        print('Number of classes in validation set: %d' % len(val_set))
        print('Number of examples in validation set: %d' % len(val_image_list))

        print('Building training graph')

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(
            prelogits,
            len(train_set),
            activation_fn=None,
            weights_initializer=slim.initializers.xavier_initializer(),
            weights_regularizer=slim.l2_regularizer(args.weight_decay),
            scope='Logits',
            reuse=False)
        # 标准化
        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Norm for the prelogits
        eps = 1e-4
        prelogits_norm = tf.reduce_mean(
            tf.norm(tf.abs(prelogits) + eps, ord=args.prelogits_norm_p,
                    axis=1))
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_norm * args.prelogits_norm_loss_factor)

        # Add center loss
        prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch,
                                                       args.center_loss_alfa,
                                                       nrof_classes)
        tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES,
                             prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch,
            logits=logits,
            name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy,
                                            name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)

        correct_prediction = tf.cast(
            tf.equal(tf.argmax(logits, 1), tf.cast(label_batch, tf.int64)),
            tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables(), args.log_histograms)

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(),
                               max_to_keep=1,
                               save_relative_paths=True)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,
                                                log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            # if pretrained_model:
            #     print('Restoring pretrained model: %s' % pretrained_model)
            #     saver.restore(sess, tf.train.latest_checkpoint(pretrained_model))

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
            ckpt = tf.train.get_checkpoint_state(args.pretrained_model)
            if ckpt and ckpt.model_checkpoint_path:
                saver.restore(sess, ckpt.model_checkpoint_path)

            # Training and validation loop
            print('Running training')
            nrof_steps = args.max_nrof_epochs * args.epoch_size
            nrof_val_samples = int(
                math.ceil(args.max_nrof_epochs / args.validate_every_n_epochs)
            )  # Validate every validate_every_n_epochs as well as in the last epoch
            stat = {
                'loss':
                np.zeros((nrof_steps, ), np.float32),
                'center_loss':
                np.zeros((nrof_steps, ), np.float32),
                'reg_loss':
                np.zeros((nrof_steps, ), np.float32),
                'xent_loss':
                np.zeros((nrof_steps, ), np.float32),
                'prelogits_norm':
                np.zeros((nrof_steps, ), np.float32),
                'accuracy':
                np.zeros((nrof_steps, ), np.float32),
                'val_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_xent_loss':
                np.zeros((nrof_val_samples, ), np.float32),
                'val_accuracy':
                np.zeros((nrof_val_samples, ), np.float32),
                'lfw_accuracy':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'lfw_valrate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'learning_rate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_train':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_validate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'time_evaluate':
                np.zeros((args.max_nrof_epochs, ), np.float32),
                'prelogits_hist':
                np.zeros((args.max_nrof_epochs, 1000), np.float32),
            }
            for epoch in range(1, args.max_nrof_epochs + 1):
                step = sess.run(global_step, feed_dict=None)
                # Train for one epoch
                t = time.time()
                cont = train(
                    args, sess, epoch, image_list, label_list,
                    index_dequeue_op, enqueue_op, image_paths_placeholder,
                    labels_placeholder, learning_rate_placeholder,
                    phase_train_placeholder, batch_size_placeholder,
                    control_placeholder, global_step, total_loss, train_op,
                    summary_op, summary_writer, regularization_losses,
                    args.learning_rate_schedule_file, stat, cross_entropy_mean,
                    accuracy, learning_rate, prelogits, prelogits_center_loss,
                    args.random_rotate, args.random_crop, args.random_flip,
                    prelogits_norm, args.prelogits_hist_max,
                    args.use_fixed_image_standardization)
                stat['time_train'][epoch - 1] = time.time() - t

                if not cont:
                    break

                t = time.time()
                if len(val_image_list) > 0 and (
                    (epoch - 1) % args.validate_every_n_epochs
                        == args.validate_every_n_epochs - 1
                        or epoch == args.max_nrof_epochs):
                    validate(args, sess, epoch, val_image_list, val_label_list,
                             enqueue_op, image_paths_placeholder,
                             labels_placeholder, control_placeholder,
                             phase_train_placeholder, batch_size_placeholder,
                             stat, total_loss, regularization_losses,
                             cross_entropy_mean, accuracy,
                             args.validate_every_n_epochs,
                             args.use_fixed_image_standardization)
                stat['time_validate'][epoch - 1] = time.time() - t

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, epoch)

                # Evaluate on LFW
                t = time.time()
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder,
                             labels_placeholder, phase_train_placeholder,
                             batch_size_placeholder, control_placeholder,
                             embeddings, label_batch, lfw_paths, actual_issame,
                             args.lfw_batch_size, args.lfw_nrof_folds, log_dir,
                             step, summary_writer, stat, epoch,
                             args.lfw_distance_metric, args.lfw_subtract_mean,
                             args.lfw_use_flipped_images,
                             args.use_fixed_image_standardization)
                stat['time_evaluate'][epoch - 1] = time.time() - t

                print('Saving statistics')
                with h5py.File(stat_file_name, 'w') as f:
                    for key, value in stat.items():
                        f.create_dataset(key, data=value)

    return model_dir
Exemplo n.º 4
0
def main(args):

    with tf.Graph().as_default():
        gpu_options = tf.GPUOptions(allow_growth=True)
        config = tf.ConfigProto(gpu_options=gpu_options)
        with tf.Session(config=config) as sess:

            # Read the file containing the pairs used for testing
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))

            # Get the paths for the corresponding images
            paths, actual_issame = lfw.get_paths(
                os.path.expanduser(args.lfw_dir), pairs)

            image_paths_placeholder = tf.placeholder(tf.string,
                                                     shape=(None, 1),
                                                     name='image_paths')
            labels_placeholder = tf.placeholder(tf.int32,
                                                shape=(None, 1),
                                                name='labels')
            batch_size_placeholder = tf.placeholder(tf.int32,
                                                    name='batch_size')
            control_placeholder = tf.placeholder(tf.int32,
                                                 shape=(None, 1),
                                                 name='control')
            phase_train_placeholder = tf.placeholder(tf.bool,
                                                     name='phase_train')

            nrof_preprocess_threads = 4
            image_size = (args.image_size, args.image_size)
            eval_input_queue = data_flow_ops.FIFOQueue(
                capacity=2000000,
                dtypes=[tf.string, tf.int32, tf.int32],
                shapes=[(1, ), (1, ), (1, )],
                shared_name=None,
                name=None)
            eval_enqueue_op = eval_input_queue.enqueue_many(
                [
                    image_paths_placeholder, labels_placeholder,
                    control_placeholder
                ],
                name='eval_enqueue_op')
            image_batch, label_batch = facenet.create_input_pipeline(
                eval_input_queue, image_size, nrof_preprocess_threads,
                batch_size_placeholder)

            # Load the model
            input_map = {
                'image_batch': image_batch,
                'label_batch': label_batch,
                'phase_train': phase_train_placeholder
            }
            facenet.load_model(args.model, input_map=input_map)

            # Get output tensor
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            #
            coord = tf.train.Coordinator()
            tf.train.start_queue_runners(coord=coord, sess=sess)

            evaluate(sess, eval_enqueue_op, image_paths_placeholder,
                     labels_placeholder, phase_train_placeholder,
                     batch_size_placeholder, control_placeholder, embeddings,
                     label_batch, paths, actual_issame, args.lfw_batch_size,
                     args.lfw_nrof_folds, args.distance_metric,
                     args.subtract_mean, args.use_flipped_images,
                     args.use_fixed_image_standardization)
def main(args):
  
    network = importlib.import_module(args.model_def)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Store some git revision info in a text file in the log directory
    src_path,_ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    random.seed(args.seed)
    print (args.data_dir)
    train_set = facenet.get_dataset(args.data_dir)
    if args.filter_filename:
        train_set = filter_dataset(train_set, os.path.expanduser(args.filter_filename), 
            args.filter_percentile, args.filter_min_nrof_images_per_class)
    nrof_classes = len(train_set)
    
    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    pretrained_model = None
    if args.pretrained_model:
        pretrained_model = os.path.expanduser(args.pretrained_model)
        print('Pre-trained model: %s' % pretrained_model)
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)
        
        # Get a list of image paths and their labels
        image_list, label_list = facenet.get_image_paths_and_labels(train_set)
        assert len(image_list)>0, 'The dataset should not be empty'
        
        # Create a queue that produces indices into the image_list and label_list 
        labels = ops.convert_to_tensor(label_list, dtype=tf.int32)
        range_size = array_ops.shape(labels)[0]
        index_queue = tf.train.range_input_producer(range_size, num_epochs=None,
                             shuffle=True, seed=None, capacity=32)
        
        index_dequeue_op = index_queue.dequeue_many(args.batch_size*args.epoch_size, 'index_dequeue')
        
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')

        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,1), name='image_paths')

        labels_placeholder = tf.placeholder(tf.int64, shape=(None,1), name='labels')
        
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                    dtypes=[tf.string, tf.int64],
                                    shapes=[(1,), (1,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder], name='enqueue_op')
        
        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents)
                if args.random_rotate:
                    image = tf.py_func(facenet.random_rotate_image, [image], tf.uint8)
                if args.random_crop:
                    image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)
    
                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])
    
        image_batch, label_batch = tf.train.batch_join(
            images_and_labels, batch_size=batch_size_placeholder, 
            shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        label_batch = tf.identity(label_batch, 'label_batch')
        
        print('Total number of classes: %d' % nrof_classes)
        print('Total number of examples: %d' % len(image_list))
        
        print('Building training graph')
        
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, bottleneck_layer_size=args.embedding_size, 
            weight_decay=args.weight_decay)
        logits = slim.fully_connected(prelogits, len(train_set), activation_fn=None, 
                weights_initializer=tf.truncated_normal_initializer(stddev=0.1), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                scope='Logits', reuse=False)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')

        # Add center loss
        if args.center_loss_factor>0.0:
            prelogits_center_loss, _ = facenet.center_loss(prelogits, label_batch, args.center_loss_alfa, nrof_classes)
            tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, prelogits_center_loss * args.center_loss_factor)

        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the average cross entropy loss across the batch
        cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
            labels=label_batch, logits=logits, name='cross_entropy_per_example')
        cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
        tf.add_to_collection('losses', cross_entropy_mean)
        
        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([cross_entropy_mean] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables(), args.log_histograms)
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False))
        sess.run(tf.global_variables_initializer())
        sess.run(tf.local_variables_initializer())
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if pretrained_model:
                print('Restoring pretrained model: %s' % pretrained_model)
                saver.restore(sess, pretrained_model)

            # Training and validation loop
            print('Running training')
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, epoch, image_list, label_list, index_dequeue_op, enqueue_op, image_paths_placeholder, labels_placeholder,
                    learning_rate_placeholder, phase_train_placeholder, batch_size_placeholder, global_step, 
                    total_loss, train_op, summary_op, summary_writer, regularization_losses, args.learning_rate_schedule_file)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    evaluate(sess, enqueue_op, image_paths_placeholder, labels_placeholder, phase_train_placeholder, batch_size_placeholder, 
                        embeddings, label_batch, lfw_paths, actual_issame, args.lfw_batch_size, args.lfw_nrof_folds, log_dir, step, summary_writer)
    sess.close()
    return model_dir
Exemplo n.º 6
0
def main(args):

    #此处导入的是:models.inception_resnet_v1模型,以后再看怎么更改模型
    network = importlib.import_module(args.model_def)
    #用当前日期来命名模型
    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    #日志保存在c:\\users\\Administrator\logs\facenet\ 文件夹里
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)  #没有日志文件就创建一个
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # 把参数写在日志文件中
    facenet.write_arguments_to_file(args, os.path.join(log_dir,
                                                       'arguments.txt'))

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    #arg_string:'E:/facenet/train_tripletloss.py'   output_dir:'C:\\Users\\Administrator/logs/facenet\\20180314-181556'
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    #获取数据集,train_set是包含文件路径与标签的集合
    #先输入一个父路径 path:'E:/facenet/data/lfw_160',接着输入每个子路径
    # 输出:一个list,每个元素是一个ImageClass,里边包含图片地址的list(image_paths)以及对应的人名(name)[以后可能会直接调用这几个属性]
    train_set = facenet.get_dataset(args.data_dir)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:  #用在判断是否有预训练模型,但是如果有,怎么加载呢?
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)

    #建立图

#with语句适用于对资源进行访问的场合,确保使用过程中是否发生异常都会执行必要嘚瑟“清理”操作
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # 学习率 Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')
        #批大小
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        #用于判断是训练还是测试
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        #图像路径
        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 3),
                                                 name='image_paths')
        # 图像标签
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 3),
                                            name='labels')
        #新建一个队列,数据流操作,fifo先入先出
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(3, ), (3, )],
                                              shared_name=None,
                                              name=None)
        #enqueue_many返回的是一个操作
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_image(file_contents, channels=3)

                if args.random_crop:
                    image = tf.random_crop(
                        image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(
                        image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)

                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'image_batch')
        image_batch = tf.identity(image_batch, 'input')
        labels_batch = tf.identity(labels_batch, 'label_batch')

        # Build the inference (构造计算图)
        #其中prelogits是最后一层的输出
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        #L2正则化(范化)函数
        # embeddings = tf.nn.l2_normalize(输入向量, L2范化的维数(取0(列L2范化)或1(行L2范化)), 泛化的最小值边界, name='embeddings')
        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative,
                                            args.alpha)
        #将指数衰减应用在学习率上
        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # 计算损失
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        #构建L2正则化
        total_loss = tf.add_n([triplet_loss] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        # 确定优化方法并根据损失函数求梯度,在这里,每更行一次参数,global_step会加1
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables())

        # Create a saver创建一个saver用来保存或者从内存中回复一个模型参数
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.能够在GPU上分配的最大内存
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        #写log文件
        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        #获取线程坐标
        coord = tf.train.Coordinator()
        #将队列中的多用sunner开始执行
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            #将所有数据过一遍的次数   默认500
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                #epoch_size是一个epoch中批的个数,这个epoch是全局的批处理个数以一个epoch中。。。这个epoch将用于求学习率
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, train_set, epoch, image_paths_placeholder,
                      labels_placeholder, labels_batch, batch_size_placeholder,
                      learning_rate_placeholder, phase_train_placeholder,
                      enqueue_op, input_queue, global_step, embeddings,
                      total_loss, train_op, summary_op, summary_writer,
                      args.learning_rate_schedule_file, args.embedding_size,
                      anchor, positive, negative, triplet_loss)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    evaluate(sess, lfw_paths, embeddings, labels_batch,
                             image_paths_placeholder, labels_placeholder,
                             batch_size_placeholder, learning_rate_placeholder,
                             phase_train_placeholder, enqueue_op,
                             actual_issame, args.batch_size,
                             args.lfw_nrof_folds, log_dir, step,
                             summary_writer, args.embedding_size)

    return model_dir
Exemplo n.º 7
0
def main(args):
  
    network = importlib.import_module(args.model_def, 'inference')

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    subdirmaxlin= subdir+'_lin_max' #fbtian_max
    maxlin_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdirmaxlin)#fbtian_max
    if not os.path.exists(maxlin_dir):#fbtian_max
        os.makedirs(maxlin_dir)#fbtian_max

    subdirmax= subdir+'_max' #fbtian_max
    modelmax_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdirmax)#fbtian_max
    if not os.path.exists(modelmax_dir):#fbtian_max
        os.makedirs(modelmax_dir)#fbtian_max

    # Store some git revision info in a text file in the log directory
    if not args.no_store_revision_info:
        src_path,_ = os.path.split(os.path.realpath(__file__))
        facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    train_set = facenet.get_dataset(args.data_dir)
    

    #for i in range(args.send2):
     #   np.random.shuffle(np.arange(10))


    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' % os.path.expanduser(args.pretrained_model))
    
    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)

    
    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32, name='learning_rate')
        
        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')
        
        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')
        
        image_paths_placeholder = tf.placeholder(tf.string, shape=(None,3), name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64, shape=(None,3), name='labels')
        
        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                    dtypes=[tf.string, tf.int64],
                                    shapes=[(3,), (3,)],
                                    shared_name=None, name=None)
        enqueue_op = input_queue.enqueue_many([image_paths_placeholder, labels_placeholder])
        
        nrof_preprocess_threads = 4
        images_and_labels = []
        
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            fb_count=0
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                print('filename:%s'%filename )
                image = tf.image.decode_png(file_contents)
                
                if args.random_crop:
                    print('args.random_crop') #fbtian_add
                    image = tf.random_crop(image, [args.image_size, args.image_size, 3])
                else:
                    #print('else not args.random_crop') #come in fbtian_add
                    image = tf.image.resize_image_with_crop_or_pad(image, args.image_size, args.image_size)
                if args.random_flip:
                    print('args.random_flip')
                    image = tf.image.random_flip_left_right(image)
                if 1 :
                    image = tf.image.random_brightness(image, max_delta=0.2)  #Random brightness transformation
                    image = tf.image.random_contrast(image, lower=0.2, upper=1.0)#Random contrast transformation
                fb_count+=1
                #pylint: disable=no-member# fbtian_add
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])
            print('fb_count:%d'%fb_count)
    
        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels, batch_size=batch_size_placeholder, 
            shapes=[(args.image_size, args.image_size, 3), ()], enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)
        image_batch = tf.identity(image_batch, 'input') ##fbtian
        batch_norm_params = {
            # Decay for the moving averages
            'decay': 0.995,
            # epsilon to prevent 0s in variance
            'epsilon': 0.001,
            # force in-place updates of mean and variance estimates
            'updates_collections': None,
            # Moving averages ends up in the trainable variables collection
            'variables_collections': [ tf.GraphKeys.TRAINABLE_VARIABLES ],
            # Only update statistics during training mode
            'is_training': phase_train_placeholder
        }
        # Build the inference graph
        prelogits, _ = network.inference(image_batch, args.keep_probability, 
            phase_train=phase_train_placeholder, weight_decay=args.weight_decay)
        pre_embeddings = slim.fully_connected(prelogits, args.embedding_size, activation_fn=None, 
                weights_initializer=tf.truncated_normal_initializer(stddev=0.1), 
                weights_regularizer=slim.l2_regularizer(args.weight_decay),
                normalizer_fn=slim.batch_norm,
                normalizer_params=batch_norm_params,
                scope='Bottleneck', reuse=False)
        
        embeddings = tf.nn.l2_normalize(pre_embeddings, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(tf.reshape(embeddings, [-1,3,args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative, args.alpha)
        
        learning_rate = tf.train.exponential_decay(learning_rate_placeholder, global_step,
            args.learning_rate_decay_epochs*args.epoch_size, args.learning_rate_decay_factor, staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the total losses
        regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([triplet_loss] + regularization_losses, name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer, 
            learning_rate, args.moving_average_decay, tf.global_variables())
        
        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        #gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=args.gpu_memory_fraction)###
        #sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options)) 
        config = tf.ConfigProto(allow_soft_placement=True) ###########################################
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.7)###################################
        config.gpu_options.allow_growth = True###########################################
        #sess = tf.Session(config=config)###########################################
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options,intra_op_parallelism_threads=8))    

        # Initialize variables
        sess.run(tf.global_variables_initializer(), feed_dict={phase_train_placeholder:True})
        sess.run(tf.local_variables_initializer(), feed_dict={phase_train_placeholder:True})

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            acc_tmp=0
            val_tmp=0
            while epoch < args.max_nrof_epochs:
                
                step = sess.run(global_step, feed_dict=None)
                print(global_step )
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, train_set, epoch, image_paths_placeholder, labels_placeholder, labels_batch,
                    batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, input_queue, global_step, 
                    embeddings, total_loss, train_op, summary_op, summary_writer, args.learning_rate_schedule_file,
                    args.embedding_size, anchor, positive, negative, triplet_loss)

                # Save variables and the metagraph if it doesn't exist already


                save_variables_and_metagraph(sess, saver, summary_writer, model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    acc,val=evaluate(sess, lfw_paths, embeddings, labels_batch, image_paths_placeholder, labels_placeholder, 
                            batch_size_placeholder, learning_rate_placeholder, phase_train_placeholder, enqueue_op, actual_issame, args.batch_size, 
                            args.lfw_nrof_folds, log_dir, step, summary_writer, args.embedding_size)

                    print('starting to save the maxacc and maxval ') #fbtian_max
                    if acc>acc_tmp:   #fbtian_max
                        maxmodel_path = os.path.join(maxlin_dir, 'model-%s.ckpt_accmax'%subdir) #fbtian_max
                        saver.save(sess, maxmodel_path, write_meta_graph=False)#fbtian_max
                        shutil.copy( maxmodel_path+'.data-00000-of-00001', modelmax_dir)
                        shutil.copy( maxmodel_path+'.index', modelmax_dir)

                        acc_tmp=acc   #fbtian_max
                    if val>val_tmp:   #fbtian_max
                        maxmodel_path = os.path.join(maxlin_dir, 'model-%s.ckpt_valmax'%subdir) #fbtian_max
                        saver.save(sess, maxmodel_path, write_meta_graph=False)#fbtian_max
                        shutil.copy( maxmodel_path+'.data-00000-of-00001', modelmax_dir)
                        shutil.copy( maxmodel_path+'.index', modelmax_dir)

                        val_tmp=val   #fbtian
                    print('end to save the maxacc and maxval ') #fbtian


    sess.close()
    return model_dir
Exemplo n.º 8
0
def main(args):

    with tf.Graph().as_default():

        with tf.Session() as sess:

            # Read the file containing the pairs used for testing
            # 1. 读入之前的pairs.txt文件
            # 读入后如[['Abel_Pacheco','1','4']]
            pairs = lfw.read_pairs(os.path.expanduser(
                args.lfw_pairs))  # 剪裁好了的图片

            # Get the paths for the corresponding images
            # 获取文件路径和是否匹配关系对
            paths, actual_issame = lfw.get_paths(
                os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
            print("paths shape =", len(paths))  # 12000
            print("paths=", paths[0:200])
            print('actual_issame shape=', len(actual_issame))  # 6000
            print('actual_issame', actual_issame[0:200])

            # Load the model
            facenet.load_model(args.model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name(
                "input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name(
                "embeddings:0")
            phase_train_placeholder = tf.get_default_graph(
            ).get_tensor_by_name("phase_train:0")

            #image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args.image_size
            embedding_size = embeddings.get_shape()[1]  # 128

            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args.lfw_batch_size
            nrof_images = len(paths)  # 12000
            nrof_batches = int(math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))  # 12000* 128
            for i in range(nrof_batches):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False,
                                           image_size)
                feed_dict = {
                    images_placeholder: images,
                    phase_train_placeholder: False
                }
                emb_array[start_index:end_index, :] = sess.run(
                    embeddings, feed_dict=feed_dict)

            # 输出调试信息
            embeddings1 = emb_array[0::2]  # 6000张图片 是每一个Paris中的第一张
            embeddings2 = emb_array[1::2]  # 6000张图片 是每一个Paris中的第2张
            diff = np.subtract(embeddings1, embeddings2)  # 每一个Paris中的两个向量相减
            dist = np.sum(np.square(diff),
                          1)  # 向量二范数的平方,两个向量之间距离的平方。 每一个Pari之间的欧几里得距离的平方
            # #也可以说是两张图片之间特征向量的相似度
            print(
                '------------------------------------------------------------')
            print('dist.len=', len(dist))

            # 把特征向量保存到文件中去 ,由于这里处理的数据不是很靠谱,所以,这里输出的特征无法直接用于聚类处理
            f = open(
                r'E:\MyPythonProjects\HWDB1\train1\pairs/embeddingsOfChinesepairs.txt',
                'w')
            for embedding in emb_array:
                for data in embedding:
                    f.write(str(data) + ' ')
                f.write('\n')
            f.close()

            # 把误差保存到文件中去
            f = open(
                r'E:\MyPythonProjects\HWDB1\train1\pairs/distInChinesePairs.txt',
                'w')
            for d in dist:
                f.write(str(d) + '\n')
            f.close()
            # ***************************************************************************

            tpr, fpr, accuracy, val, val_std, far = lfw.evaluate(
                emb_array, actual_issame, nrof_folds=args.lfw_nrof_folds)

            print('Accuracy: %1.3f+-%1.3f' %
                  (np.mean(accuracy), np.std(accuracy)))
            print('Validation rate: %2.5f+-%2.5f @ FAR=%2.5f' %
                  (val, val_std, far))

            auc = metrics.auc(fpr, tpr)
            print('Area Under Curve (AUC): %1.3f' % auc)
            eer = brentq(lambda x: 1. - x - interpolate.interp1d(fpr, tpr)(x),
                         0., 1.)
            print('Equal Error Rate (EER): %1.3f' % eer)
Exemplo n.º 9
0
def main(args):
    print(args.model_def)
    network = importlib.import_module(args.model_def, 'inference')

    print(1111)

    subdir = datetime.strftime(datetime.now(), '%Y%m%d-%H%M%S')
    log_dir = os.path.join(os.path.expanduser(args.logs_base_dir), subdir)
    if not os.path.isdir(
            log_dir):  # Create the log directory if it doesn't exist
        os.makedirs(log_dir)
    model_dir = os.path.join(os.path.expanduser(args.models_base_dir), subdir)
    if not os.path.isdir(
            model_dir):  # Create the model directory if it doesn't exist
        os.makedirs(model_dir)

    # Store some git revision info in a text file in the log directory
    src_path, _ = os.path.split(os.path.realpath(__file__))
    facenet.store_revision_info(src_path, log_dir, ' '.join(sys.argv))

    np.random.seed(seed=args.seed)
    train_set = facenet.get_dataset(args.data_dir)

    print('Model directory: %s' % model_dir)
    print('Log directory: %s' % log_dir)
    if args.pretrained_model:
        print('Pre-trained model: %s' %
              os.path.expanduser(args.pretrained_model))

    if args.lfw_dir:
        print('LFW directory: %s' % args.lfw_dir)
        # Read the file containing the pairs used for testing
        pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))
        # Get the paths for the corresponding images
        lfw_paths, actual_issame = lfw.get_paths(
            os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)

    with tf.Graph().as_default():
        tf.set_random_seed(args.seed)
        global_step = tf.Variable(0, trainable=False)

        # Placeholder for the learning rate
        learning_rate_placeholder = tf.placeholder(tf.float32,
                                                   name='learning_rate')

        batch_size_placeholder = tf.placeholder(tf.int32, name='batch_size')

        phase_train_placeholder = tf.placeholder(tf.bool, name='phase_train')

        image_paths_placeholder = tf.placeholder(tf.string,
                                                 shape=(None, 3),
                                                 name='image_paths')
        labels_placeholder = tf.placeholder(tf.int64,
                                            shape=(None, 3),
                                            name='labels')

        input_queue = data_flow_ops.FIFOQueue(capacity=100000,
                                              dtypes=[tf.string, tf.int64],
                                              shapes=[(3, ), (3, )],
                                              shared_name=None,
                                              name=None)
        enqueue_op = input_queue.enqueue_many(
            [image_paths_placeholder, labels_placeholder])

        nrof_preprocess_threads = 4
        images_and_labels = []
        for _ in range(nrof_preprocess_threads):
            filenames, label = input_queue.dequeue()
            images = []
            for filename in tf.unstack(filenames):
                file_contents = tf.read_file(filename)
                image = tf.image.decode_png(file_contents)

                if args.random_crop:
                    image = tf.random_crop(
                        image, [args.image_size, args.image_size, 3])
                else:
                    image = tf.image.resize_image_with_crop_or_pad(
                        image, args.image_size, args.image_size)
                if args.random_flip:
                    image = tf.image.random_flip_left_right(image)

                #pylint: disable=no-member
                image.set_shape((args.image_size, args.image_size, 3))
                images.append(tf.image.per_image_standardization(image))
            images_and_labels.append([images, label])

        image_batch, labels_batch = tf.train.batch_join(
            images_and_labels,
            batch_size=batch_size_placeholder,
            shapes=[(args.image_size, args.image_size, 3), ()],
            enqueue_many=True,
            capacity=4 * nrof_preprocess_threads * args.batch_size,
            allow_smaller_final_batch=True)

        # Build the inference graph
        prelogits, _ = network.inference(
            image_batch,
            args.keep_probability,
            phase_train=phase_train_placeholder,
            bottleneck_layer_size=args.embedding_size,
            weight_decay=args.weight_decay)

        embeddings = tf.nn.l2_normalize(prelogits, 1, 1e-10, name='embeddings')
        # Split embeddings into anchor, positive and negative and calculate triplet loss
        anchor, positive, negative = tf.unstack(
            tf.reshape(embeddings, [-1, 3, args.embedding_size]), 3, 1)
        triplet_loss = facenet.triplet_loss(anchor, positive, negative,
                                            args.alpha)

        learning_rate = tf.train.exponential_decay(
            learning_rate_placeholder,
            global_step,
            args.learning_rate_decay_epochs * args.epoch_size,
            args.learning_rate_decay_factor,
            staircase=True)
        tf.summary.scalar('learning_rate', learning_rate)

        # Calculate the total losses
        regularization_losses = tf.get_collection(
            tf.GraphKeys.REGULARIZATION_LOSSES)
        total_loss = tf.add_n([triplet_loss] + regularization_losses,
                              name='total_loss')

        # Build a Graph that trains the model with one batch of examples and updates the model parameters
        train_op = facenet.train(total_loss, global_step, args.optimizer,
                                 learning_rate, args.moving_average_decay,
                                 tf.global_variables())

        # Create a saver
        saver = tf.train.Saver(tf.trainable_variables(), max_to_keep=3)

        # Build the summary operation based on the TF collection of Summaries.
        summary_op = tf.summary.merge_all()

        # Start running operations on the Graph.
        gpu_options = tf.GPUOptions(
            per_process_gpu_memory_fraction=args.gpu_memory_fraction)
        sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options))

        # Initialize variables
        sess.run(tf.global_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})
        sess.run(tf.local_variables_initializer(),
                 feed_dict={phase_train_placeholder: True})

        summary_writer = tf.summary.FileWriter(log_dir, sess.graph)
        coord = tf.train.Coordinator()
        tf.train.start_queue_runners(coord=coord, sess=sess)

        with sess.as_default():

            if args.pretrained_model:
                print('Restoring pretrained model: %s' % args.pretrained_model)
                saver.restore(sess, os.path.expanduser(args.pretrained_model))

            # Training and validation loop
            epoch = 0
            while epoch < args.max_nrof_epochs:
                step = sess.run(global_step, feed_dict=None)
                epoch = step // args.epoch_size
                # Train for one epoch
                train(args, sess, train_set, epoch, image_paths_placeholder,
                      labels_placeholder, labels_batch, batch_size_placeholder,
                      learning_rate_placeholder, phase_train_placeholder,
                      enqueue_op, input_queue, global_step, embeddings,
                      total_loss, train_op, summary_op, summary_writer,
                      args.learning_rate_schedule_file, args.embedding_size,
                      anchor, positive, negative, triplet_loss)

                # Save variables and the metagraph if it doesn't exist already
                save_variables_and_metagraph(sess, saver, summary_writer,
                                             model_dir, subdir, step)

                # Evaluate on LFW
                if args.lfw_dir:
                    evaluate(sess, lfw_paths, embeddings, labels_batch,
                             image_paths_placeholder, labels_placeholder,
                             batch_size_placeholder, learning_rate_placeholder,
                             phase_train_placeholder, enqueue_op,
                             actual_issame, args.batch_size,
                             args.lfw_nrof_folds, log_dir, step,
                             summary_writer, args.embedding_size)

    sess.close()
    return model_dir
Exemplo n.º 10
0
def main(args):
    with tf.Graph().as_default():

        with tf.Session() as sess:

            # Read the file containing the pairs used for testing
            # 1. 读入之前的pairs.txt文件
            # 读入后如[['Abel_Pacheco','1','4']]
            pairs = lfw.read_pairs(os.path.expanduser(args.lfw_pairs))  # 剪裁好了的图片

            # Get the paths for the corresponding images
            # 获取文件路径和是否匹配关系对
            paths, actual_issame = lfw.get_paths(os.path.expanduser(args.lfw_dir), pairs, args.lfw_file_ext)
            print("paths shape =", len(paths))  # 12000
            print("paths=", paths[0:200])
            print('actual_issame shape=', len(actual_issame))  # 6000
            print('actual_issame', actual_issame[0:200])

            # Load the model
            facenet.load_model(args.model)

            # Get input and output tensors
            images_placeholder = tf.get_default_graph().get_tensor_by_name("input:0")
            embeddings = tf.get_default_graph().get_tensor_by_name("embeddings:0")
            phase_train_placeholder = tf.get_default_graph().get_tensor_by_name("phase_train:0")

            # image_size = images_placeholder.get_shape()[1]  # For some reason this doesn't work for frozen graphs
            image_size = args.image_size
            embedding_size = embeddings.get_shape()[1]  # 128

            # Run forward pass to calculate embeddings
            print('Runnning forward pass on LFW images')
            batch_size = args.lfw_batch_size
            nrof_images = len(paths)  # 12000
            nrof_batches = int(math.ceil(1.0 * nrof_images / batch_size))
            emb_array = np.zeros((nrof_images, embedding_size))  # 12000* 128
            for i in range(nrof_batches):
                start_index = i * batch_size
                end_index = min((i + 1) * batch_size, nrof_images)
                paths_batch = paths[start_index:end_index]
                images = facenet.load_data(paths_batch, False, False, image_size)
                feed_dict = {images_placeholder: images, phase_train_placeholder: False}
                emb_array[start_index:end_index, :] = sess.run(embeddings, feed_dict=feed_dict)

            # 输出调试信息
            embeddings1 = emb_array[0::2]  # 6000张图片 是每一个Paris中的第一张
            embeddings2 = emb_array[1::2]  # 6000张图片 是每一个Paris中的第2张
            diff = np.subtract(embeddings1, embeddings2)  # 每一个Paris中的两个向量相减
            dist = np.sum(np.square(diff), 1)  # 向量二范数的平方,两个向量之间距离的平方。 每一个Pari之间的欧几里得距离的平方
            # #也可以说是两张图片之间特征向量的相似度
            print('------------------------------------------------------------')
            print('dist.len=', len(dist))

            # 把特征向量保存到文件中去
            f = open(r'E:\MyPythonProjects\HWDB1\train1\pairs/embeddingsOfCluster.txt', 'w')
            for embedding in emb_array:
                for data in embedding:
                    f.write(str(data) + ' ')
                f.write('\n')
            f.close()

            # 把误差保存到文件中去
            f = open(r'E:\MyPythonProjects\HWDB1\train1\pairs/distForCluster.txt', 'w')
            for d in dist:
                f.write(str(d) + '\n')
            f.close()

            # 对数据做聚类 k-means 10个类别
            from sklearn.cluster import KMeans
            kmeans=KMeans(n_clusters=10,random_state=0).fit(emb_array)
            #cluster_centers_   cluster_centers_kmeans
            f=open(r'E:\MyPythonProjects\HWDB1\train1\pairs/cluster_centers_kmeans.txt','w')
            for centers in kmeans.cluster_centers_:
                for i in centers:
                    f.write(str(i)+' ')
                f.write('\n')
            f.close()

            f=open(r'E:\MyPythonProjects\HWDB1\train1\pairs/labelsForKmeansCluster.txt','w')
            for label in kmeans.labels_:
                f.write(str(label)+'\n') # 从数据中可以看出来,是有一定的聚类的作用。不过效果不是特别好
            f.close()

            print("Done")

            # # 绘制三维图像
            #
            # import matplotlib.pyplot as plt
            # from mpl_toolkits.mplot3d import Axes3D
            # data =emb_array[:,0:3]
            #
            # x, y, z = data[:, 0], data[:, 1], data[:, 2]
            #
            # fig = plt.figure()
            # ax = fig.add_subplot(111, projection='3d')  # 创建一个三维的绘图工程
            # #  将数据点分成三部分画,在颜色上有区分度
            # # b: blue
            # # g: green
            # # r: red
            # # c: cyan
            # # m: magenta
            # # y: yellow
            # # k: black
            # # w: white
            #
            # ax.scatter(x[0:200], y[0:200], z[0:200], c='b')  # 绘制数据点
            # ax.scatter(x[200:400], y[200:400], z[200:400], c='r')
            # ax.scatter(x[400:600], y[400:600], z[400:600], c='g')
            # ax.scatter(x[600:800], y[600:800], z[600:800], c='k')
            #
            # ax.set_zlabel('Z')  # 坐标轴
            # ax.set_ylabel('Y')
            # ax.set_xlabel('X')
            # plt.show()

            '''